检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在线服务和批量服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。 父主题:
使用大模型在ModelArts Standard创建模型部署在线服务 背景说明 目前大模型的参数量已经达到千亿甚至万亿,随之大模型的体积也越来越大。千亿参数大模型的体积超过200G,在版本管理、生产部署上对平台系统产生了新的要求。例如:导入模型时,需要支持动态调整租户存储配额;模
自定义镜像模型部署为在线服务时出现异常 问题现象 在部署在线服务时,部署失败。进入在线服务详情页面,“事件”页签,提示“failed to pull image, retry later”,同时在“日志”页签中,无任何信息。 图1 部署在线服务异常 解决方法 出现此问题现象,通常
访问在线服务支持的认证方式 通过Token认证的方式访问在线服务 通过AK/SK认证的方式访问在线服务 通过APP认证的方式访问在线服务 父主题: 将模型部署为实时推理作业
访问在线服务支持的访问通道 通过公网访问通道的方式访问在线服务 通过VPC访问通道的方式访问在线服务 通过VPC高速访问通道的方式访问在线服务 父主题: 将模型部署为实时推理作业
访问在线服务支持的传输协议 使用WebSocket协议的方式访问在线服务 使用Server-Sent Events协议的方式访问在线服务 父主题: 将模型部署为实时推理作业
在“订单信息确认”页面,确认服务信息和费用,单击“确定”跳转至在线推理服务列表页面。 当“状态”变为“运行中”表示在线推理服务部署成功,可以进行服务预测。 推理服务预测 待在线推理服务状态变为“运行中”时,便可进行推理预测。 在在线推理服务列表页面,选择服务“状态”为“运行中”的服务。
在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端设备通常计算能力不
部署服务时,ModelArts报错“ModelArts.3520: 在线服务总数超限,限制为20”,接口返回“A maximum of xxx real-time services are allowed.”,表示服务数量超限。 正常情况下,单个用户最多可创建20个在线服务。可采取以下方式处理: 删除状态为“异常”的服务。
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab文件到本地
使用自定义镜像创建在线服务,如何修改默认端口 当模型配置文件中定义了具体的端口号,例如:8443,创建AI应用没有配置端口(默认端口号为8080),或者配置了其他端口号,均会导致服务部署失败。您需要把AI应用中的端口号配置为8443,才能保证服务部署成功。 修改默认端口号,具体操作如下:
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
指按某种策略由已知判断推出新判断的思维过程。人工智能领域下,由机器模拟人类智能,使用构建的神经网络完成推理过程。 在线推理 在线推理是对每一个推理请求同步给出推理结果的在线服务(Web Service)。 批量推理 批量推理是对批量数据进行推理的批量作业。 昇腾芯片 昇腾芯片又叫As
在开发环境中创建MindInsight可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动MindInsight Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间> Noteb
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
区域选择“Resource Monitor”,展示“CPU使用率”和“内存使用率”。 图22 资源监控 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
初始化。 因此,推荐在创建AI应用时配置健康检查,并设置合理的延迟检测时间, 实现实际业务的是否成功的检测,确保服务部署成功。 父主题: 在线服务
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发