检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Console图详情的内网访问地址或者管理面API查询图详情返回体的"privateIp"字段的值。 通过ECS访问,但创建ECS的VPC和创建图选定的VPC不是同一个。需要对ECS所在的VPC和建图用的VPC创建VPC对等连接,创建VPC对等连接请参考创建对等连接。同时要在创建图的安全组开
Louvain算法 概述 Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度。 适用场景 Louvain算法适用于社团发掘、层次化聚类等场景。 参数说明 表1 Louvain算法参数说明
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以
Paths:表示距离最短的时序路径。 Foremost Temporal Paths:表示尽可能早的到达目标节点的时序路径。 Fastest Temporal Paths :表示耗费时间最短的时序路径。 适用场景 适用于疫情或疾病传播溯源、信息传播和舆情分析、结合时序的路径规划、资金流通路径等场景。
根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。
SDK)是对GES提供的REST API进行的封装,以简化用户的开发工作。 SDK 业务面SDK 管理面SDK Cypher JDBC Driver访问GES 02 购买 GES的计费简单、易于预测,您既可以选择按照小时费率计费的按需计费方式,也可以选择更经济的预付费实例计费方式。
运维监控与告警 监控项列表 图实例运维监控 监控 Cloud Eye监控集群
08:00:00] 期间感染了新冠(注:这里点的状态变化,如感染疾病,建模为与对应点相关的边)。 图2 动态图数据示例 动态图的元数据 时间戳是动态图的重要特征,为了描述动态图数据,需要在元数据中,定义时间戳相关的属性startTime 、endTime。 注意:这里的startTime 、end
AK/SK签名认证方式仅支持消息体大小为12M以内的请求,12M以上的请求请使用Token认证。 AK(Access Key ID):访问密钥ID。与私有访问密钥关联的唯一标识符;访问密钥ID和私有访问密钥一起使用,对请求进行加密签名。 SK(Secret Access Key):与访问密钥ID结合使用的密钥,对请求
子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于社交网络分析、生物信息学、交通运输、群体发现、异常检测等领域。
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归地计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache
一个可用区是一个或多个物理数据中心的集合,可用区内在逻辑上再将计算、网络、存储等资源划分成多个集群。一个区域中的多个可用区之间通过高速光纤相连,以满足用户跨可用区构建高可用性系统的需求。 项目 华为云的区域默认对应一个项目,这个项目由系统预置,用来隔离物理区域间的资源(计算资源、存储资源和网络资源),以
源使用,无需提前预置资源,从而降低预置过多或不足的风险。一般适用于电商抢购等设备需求量瞬间大幅波动的场景。 表1列出了两种计费模式的区别。 表1 计费模式 计费模式 包年/包月 按需计费 付费方式 预付费 后付费 计费周期 按订单的购买周期计费。 秒级计费,按小时结算。 适用计费项
对于该source节点的随机游走将提前结束。 Int 1~2000 1000 label 否 希望输出的点的类型。 说明: 其值为空时,将不考虑点的类型,输出算法原始计算结果。 对其赋值时,将从计算结果中过滤出具有该“label”的点的返回。 String 节点label - directed
Centrality)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别,城市热点事件\早晚高峰人群车辆迁徙发生时关键路段的模拟;适用于社交、金融风控、交通路网、城市规划等领域 参数说明
可查看所创建图的状态及运行结果。 图模板创建的图不用设置图名称,默认命名为对应图模板的图名(例如:资产管理图为assets_management)。 创建后,在图列表中,可见创建的图名格式为:assets_management_XXXX。其中XXXX是系统自动生成的特殊标识且不可修改。
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 如果点被删除了,基于该点的边会自动删除。 父主题: