检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。
在您开启了云审计服务后,系统会记录ModelArts的相关操作,且控制台保存最近7天的操作记录。本节介绍如何在云审计服务管理控制台查看最近7天的操作记录。 对接云审计服务的配置方法请参见查看审计日志章节。 父主题: 安全
原因分析 在ModelArts侧进行节点重置后,modelarts-os会向节点添加准入污点,进行节点准入,而因为集群volcano没有污点容忍,且集群内只有一个节点,导致volcano无法启动,进而导致modelarts-os节点上管理污点的maos-node-agent容器无法启动
" os.environ['UNET_PATH'] = f"{mindir_dir}/unet_graph.mindir" os.environ['VAE_DECODER_PATH'] = f"{mindir_dir}/vae_decoder.mindir" os.environ[
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。
其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。
DEFAULT_CONDA_ENV_NAME/lib:$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py 使用Ascend自定义镜像训练时的训练代码适配规范 使用NPU资源创建训练作业时,系统会在训练容器里自动生成
对于数据集中列的过滤策略如下所示: 如果某一列空缺的比例大于系统设定的阈值(0.9),此列数据在训练时将被剔除。 如果某一列只有一种取值(即每一行的数据都是一样的),此列数据在训练时将被剔除。
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。
“配置文件” 系统默认关联您存储在OBS中的配置文件。打开开关,您可以直接在当前界面查看或编辑模型配置文件。 说明: 该功能即将下线,后续请根据“AI引擎”、“运行时依赖”和“apis定义”修改模型的配置信息。
os.getcwd() #获取文件当前工作目录路径(绝对路径) os.path.realpath(__ file __) #获得文件所在的路径(绝对路径) 也可在搜索引擎寻找其他获取文件路径的方式,使用获取到的路径进行文件读写。 父主题: 编写训练代码
"item_version_id", # 算法订阅版本ID,也可直接填写版本号 parameters=[] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值
_tmp_name = name.replace('/', '_') if mox.file.exists(name): mox.file.copy(name, os.path.join('cache', 'h5py_tmp', self.
import os os.system("pip install /home/ma-user/modelarts/package/moxing_framework-*.whl") 本案例仅适用于训练作业环境。 父主题: 功能咨询
/usr/bin/env python import os import torch import torch.distributed as dist import torch.multiprocessing as mp def run(rank, size): """
import os; os.system(find /usr -name *libcudart.so*); 设置环境变量LD_LIBRARY_PATH,设置完成后,重新下发作业即可。
宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 shm-size:共享内存大小。
import os os.system('export TMPDIR=/cache') 父主题: 硬盘限制故障