检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
修复Standard专属资源池故障节点 Standard专属资源池支持对故障节点进行修复操作,目前提供了替换节点、高可用冗余节点、重置节点和重启节点等方式。华为云技术支持在故障定位和性能诊断时,部分运维操作需要用户授权才可进行,本章节同时也介绍了如何进行授权操作。 故障节点处理方式
查看模型评估结果 训练作业运行结束后,ModelArts可为您的模型进行评估,并且给出调优诊断和建议。 针对使用预置算法创建训练作业,无需任何配置,即可查看此评估结果(由于每个模型情况不同,系统将自动根据您的模型指标情况,给出一些调优建议,请仔细阅读界面中的建议和指导,对您的模型进行进一步的调优
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到
启动推理服务 本章节主要介绍大语言模型的推理服务启动方式,包括离线推理和在线推理2种方式。 离线推理 编辑一个python脚本,脚本内容如下,运行该脚本使用ascend-vllm进行模型离线推理。 from vllm import LLM, SamplingParams def
创建处理任务 功能介绍 创建处理任务,支持创建“特征分析”任务和“数据处理”两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理
非分离部署推理服务 本章节介绍如何使用vLLM 0.5.0框架部署并启动推理服务。 什么是非分离部署 全量推理和增量推理在同一节点上进行。 前提条件 已准备好Server环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的Server和昇腾Snt9b资源。 安装过程需要连接互联网
创建多机多卡的分布式训练(DistributedDataParallel) 本章节介绍基于PyTorch引擎的多机多卡数据并行训练。并提供了分布式训练调测具体的代码适配操作过程和代码示例。同时还针对Resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例
查询处理任务列表 功能介绍 查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的
GPT-2基于Server适配PyTorch GPU的训练推理指导 场景描述 本文将介绍在GP Ant8裸金属服务器中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。 背景信息 Megatron-DeepSpeed
CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVideoX
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite Server上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为用户提供推理部署方案
模型适配 MindSpore Lite是华为自研的推理引擎,能够最大化地利用昇腾芯片的性能。在使用MindSpore Lite进行离线推理时,需要先将模型转换为mindir模型,再利用MindSpore Lite作为推理引擎,将转换后的模型直接运行在昇腾设备上。模型转换需要使用converter_lite
InternVL2基于LIte Server适配PyTorch NPU训练指导(6.3.912) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展InternVL2-8B, InternVL2-26B和InternVL2
SD1.5&SDXL ComfyUI、WebUI、Diffusers套件适配PyTorch NPU的推理指导(6.3.912) 本文档主要介绍如何在ModelArts Lite Server环境中部署Stable Diffusion模型对应SD1.5和SDXL的ComfyUI、Webui
执行训练任务(推荐) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作
部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到
部署推理服务 本章节介绍如何使用vLLM 0.6.3框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到
在Notebook中通过Dockerfile从0制作自定义镜像用于推理 场景说明 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts,创建为模型。 本文详细介绍如何在ModelArts的开发环境Notebook中使用基础镜像构建一个新的推理镜像