检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
factory对齐,6.3.912版本调整以下参数: 新增 STAGE,表示训练的阶段,可以选择的参数包括: {pt, sft}. 新增 FINETUNING_TYPE,表示微调的策略,可以选择的参数包括:{full, lora} 删除 RUN_TYPE 所以当前的组合情况为: 项目
factory对齐,6.3.912版本调整以下参数: 新增 STAGE,表示训练的阶段,可以选择的参数包括: {pt, sft}. 新增 FINETUNING_TYPE,表示微调的策略,可以选择的参数包括:{full, lora} 删除 RUN_TYPE 所以当前的组合情况为: 项目
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd是 huggingface专用下载工具,基于成熟工具git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
支持CopyBlocks算子,满足vllm框架beam search解码场景 支持AdvanceStep算子,满足vllm投机推理场景 多个融合算子支持PTA图模式适配,满足AIGC场景 支持两种版本配套算子包(torch2.1.0和python3.9、torch2.3.1和python3
MRS and DLI. CPU 否 是 mlstudio-pyspark2.3.2-ubuntu16.04 CPU算法开发和训练基础镜像,包含可以图形化机器学习算法开发和调测MLStudio工具,并预置PySpark2.3.2 CPU 否 是 mindspore_1.10.0-cann_6
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
Turbo中的数据执行编辑操作。 创建Notebook 创建开发环境Notebook实例,具体操作步骤请参考创建Notebook实例。 镜像选择已注册的自定义镜像,资源类型选择创建好的专属资源池,规格推荐选择“Ascend: 8*ascend-snt9b”。 图1 Notebook中选择自定义镜像与规格
量。 帮助用户提高数据的质量。 提供图像、文本、音频、视频等多种格式数据的预览,帮助用户识别数据质量。 提供对数据进行多维筛选的能力,用户可以根据样本属性、标注信息等进行样本筛选。 提供12+标注工具,方便用户进行精细化、场景化和专业化的数据标注。 提供基于样本和标注结果进行特征分析,帮助用户整体了解数据的质量。
数据生命周期与训练作业生命周期相同,当训练作业运行结束以后“/cache”目录下面所有内容会被清空,腾出空间,供下一次训练作业使用。因此,可以在训练过程中将数据从OBS复制到“/cache”目录,然后每次从“/cache”目录读取数据,直到训练结束。训练结束以后“/cache”目录的内容会自动被清空。
le的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。
le的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,若指定则为per-token粒度量化,否则为per-tensor粒度量化。
le的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。
在主机上新建config.yaml文件。 config.yaml文件用于配置pod,本示例中使用sleep命令启动pod,便于进入pod调试。您也可以修改command为对应的任务启动命令(如“python train.py”),任务会在启动容器后执行。 config.yaml内容如下:
更新管理 ModelArts在线服务更新 对于已部署的推理服务,ModelArts支持通过更换模型的版本号,实现服务升级。 推理服务有三种升级模式:全量升级、滚动升级(扩实例)和滚动升级(缩实例)。了解三种升级模式的流程,请参见图1。 全量升级 需要额外的双倍的资源,先全量创建新版本实例,然后再下线旧版本实例。