检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook 本案例需要创建一个Notebook,以便能够通过它访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS
不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配
重,例如DeepSeek-V3在转换前权重约为640G左右,在转换后权重约为1.3T左右。 创建文件存放目录 在每台Server机器上创建一个目录${path-to-file},例如:/home/data/,用于存放权重文件和rank_table_file.json文件。 方式一:直接下载已经转换成功的BF16权重
real-time类型必选。权重百分比,分配到此模型的流量权重,仅当infer_type为real-time时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。
根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 进入benchmark_tools目录下,切换一个conda环境。 cd benchmark_tools conda activate python-3.9.10 执行脚本benchmark_serving
中将输入shape的动态维度设为-1,并在ge.dynamicDims中指定动态维度的档位,更多配置项可以参考官方文档。 如果网络模型只有一个输入:每个档位的dim值与input_shape参数中的-1标识的参数依次对应,input_shape参数中有几个-1,则每档必须设置几个维度。
autosearch_config_path String 自动化搜索作业的yaml配置路径,需要提供一个OBS路径。 autosearch_framework_path String 自动化搜索作业的框架代码目录,需要提供一个OBS路径。 command String 自定义镜像训练作业的自定义镜像的容器的启动命令。可填code_dir。
根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 进入benchmark_tools目录下,切换一个conda环境。 cd benchmark_tools conda activate python-3.9.10 执行脚本benchmark_serving
根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 进入benchmark_tools目录下,切换一个conda环境。 cd benchmark_tools conda activate python-3.9.10 执行脚本benchmark_serving
json”文件内容,如果文件不存在则新建即可。 vim /etc/docker/daemon.json 增加如下两项配置,注意insecure-registries行末尾增加一个逗号,保持json格式正确。其中“data_root”代表docker数据存储路径,“default-shm-size”代表容器启动默认分
计费工作流订阅包信息。 表4 WorkflowStep 参数 参数类型 描述 name String Workflow工作流节点的名称,在一个DAG中唯一,1到64位只包含中英文,数字,空格,下划线(_)和中划线(-),并且以中英文开头。 type String 节点的类型,枚举值如下:
running on http://0.0.0.0:8080 (Press CTRL+C to quit) Step5 请求推理服务 另外启动一个terminal,使用命令测试推理服务是否正常启动,端口请修改为启动服务时指定的端口。 方式一:使用vLLM接口请求服务,命令参考如下。 curl
模型初始化 使用MindSpore Lite进行推理时一般需要先设置目标设备的上下文信息,然后构建推理模型,获取输入数据,模型预测并得到最终的结果。一个基础的推理框架写法如下所示: # base_mslite_demo.py import mindspore_lite as mslite
--device=/dev/davinci0:挂载NPU设备,单卡即可。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 进入容器。默认使用ma-user用户,后续所有操作步骤都在ma-user用户下执行。 docker
配和修正,分为三个方面:添加输出目录、复制数据集到本地、映射数据集路径到OBS。 添加输出目录 添加输出目录的代码比较简单,即在代码中添加一个输出评估结果文件的目录,被称为train_url,也就是页面上的训练输出位置。并把train_url添加到使用的函数analysis中,使
不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配
不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配
载NPU设备,示例中挂载了8张卡davinci0~davinci7。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 进入容器。默认使用ma-user用户,后续所有操作步骤都在ma-user用户下执行。 docker
running on http://0.0.0.0:8080 (Press CTRL+C to quit) Step4 请求推理服务 另外启动一个terminal,使用命令测试推理服务是否正常启动,端口请修改为启动服务时指定的端口。 方式一:使用vLLM接口请求服务,命令参考如下。 curl
参数 参数类型 描述 name String 网络名称;用户接口通过指定网络名称创建网络,系统会自动创建子网,用户无法创建子网。默认将创建在第一个子网下。 表11 PoolDriver 参数 参数类型 描述 gpuVersion String GPU驱动版本,物理资源池中含有GPU规格时可填,例如:"440