检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
回归分类数据 csv 训练预测大模型所需数据量 训练预测大模型时,所需的数据通常为表格格式,即由行和列组成的扁平化数据。具体要求如下: 行:每行代表一个样本。每行与其他行具有相同的列,并且顺序相同,这些行通常按照某种特定顺序排列。 列:每列表示一种特征。每列的数据类型应保持一致,不同列可以具有不同的数据类型。
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的
在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。
灵活的工作流设计:平台提供灵活的工作流设计,用于开发者处理逻辑复杂、且有较高稳定性要求的任务流。 支持“零码”和“低码”开发者通过“拖拉拽”的方式快速搭建一个工作流,创建一个应用。 Agent开发平台应用场景 当前,基于Agent开发平台可以构建两种类型的应用,一种是针对文本生成、文本检索的知识型Age
可用区(AZ,Availability Zone) 一个AZ是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。 项目 华为云的区域默认对应一个项目,这个项目由系统预置
单任务中模糊的指示也会取得较好的效果,但对于规则越复杂的任务,越需要应用这些技巧来输出一个逻辑自洽、清晰明了的指令。 提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或
增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高级文案策划,请生成10个理财产品的宣传文案。”、“你是一个财务分析师,请分析上述财务指标的趋势。” 父主题: 提示词写作进阶技巧
达到较好的效果。 业务逻辑的复杂性 判断任务场景的业务逻辑是否符合通用逻辑。如果场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在提示词中引导模型学习如何简洁明了地作答。 如果场景涉及较为复杂、专业的业务逻辑
具体格式要求详见表1。 表1 预测类数据集格式要求 文件内容 文件格式 文件样例 时序 csv 数据为结构化数据,包含列和行,每一行表示一条数据,每一列表示一个特征,并且必须包含预测目标列,预测目标列要求为连续型数据。 目录下只有1个数据文件时,文件无命名要求。 目录下有多个数据文件时,需要通过命
"text": "故事标题:《穿越宋朝的奇妙之旅》在一个阴雨绵绵的夜晚,一个名叫李晓的年轻人正在阅读一本关于宋朝的历史书籍。突然,他感到一阵眩晕,当他再次睁开眼睛时,他发现自己身处一个完全陌生的地方。李晓发现自己穿越到了宋朝。他身处一座繁华的城市,人们穿着古
可以通过重试机制解决,在代码里检查返回值,碰到这个并发错误可以延时一小段时间(如2-5s)重试请求;也可以后端检查上一个请求结果,上一个请求返回之后再发送下一个请求,避免请求过于频繁。 请与技术支持确认,API是否已完成部署。 APIG.0301 Incorrect IAM authentication
使用规则构建的优点是快速且成本低,缺点是数据多样性较低。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者
- 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求 华为云盘古大模型推理SDK要求:
训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。
多轮问答场景的输入(“context”字段)请务必使用“[问题, 回答, 问题, 回答, 问题, ……]”的方式来构造,若您的数据是同一个角色连续多次对话的“多轮问题”,可以将同一个角色的对话采用某个分隔符拼接到一个字符串中。例如: 原始对话示例: A:xxx号话务员为您服务! A:先生您好,有什么可以帮助您的? B:你好,是这样的
大模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模
这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 高空Loss(深海Loss) 高空Loss(深海Loss)是衡量模型在高空层次变量
数据集版本信息。 'classes': [category1',category2', ...],// 所有类别名称的列表,每个类别对应一个 label,用于标注视频中的事件或动作。 'database': { 'video_name':{
问答场景中,也称为检索增强问答,如政务问答场景,行业客服智能问答场景等。 下面将以一个具体的政务问答助手为例进行说明。该场景通过收集政务问答数据和相关政务问答文档,基于检索增强问答框架,构建了一个智能化的政务问答助手。 图1 政务问答智能助手整体框架 上图给出了政务问答智能助手的
{"system":"你是一个机智幽默问答助手","context":"你好,请介绍自己","target":"哈哈,你好呀,我是你的聪明助手。"} csv格式:csv文件的第一列对应system,第二三列分别对应context、target。 "你是一个机智幽默问答助手","你好,请介绍自己"