检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 URI POST /ges/v1.0/{project_id}/hyg
扩展出与当前点有关联的点,可以选择OUT(沿出边)、IN(沿入边)或者ALL(双向)。 OUT:沿出边,查询所有以该点为源点,指向的其他点。 IN:沿入边,查询以该点为终点,指向该点的其他点。 ALL:双向,包含了OUT和IN查询的所有点。 导出 导出当前绘图区显示的图或者数据。 路径查询
启动图(1.0.0) 功能介绍 启动一个图。暂时不用的图可以先关闭,需要使用时再启动。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1.0/{pro
连通分量(connected_component) 功能介绍 根据输入参数,执行连通分量(Connected Component)算法。 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量(weakly
全最短路算法(All Shortest Paths) 概述 全最短路径算法(All Shortest Paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的所有最短路径。 适用场景 全最短路径算法(All Shortest Paths)适用于路径设计、网络规划等场景。
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 适用场景 标签传播算法(Label Propagation)适用于资讯传播、广告推荐、社区发现等场景。
查询job列表 功能介绍 异步任务jobId返回后,若jobId业务层丢失无法通过接口重新获取,现在提供一个新的接口用于查询engine中保存的所有异步任务,返回每个任务的jobId、job状态、原始请求。 图规格为持久化版的图,目前最多返回100000条请求。 URI GET /ges/v1
强制重启图(2.2.21) 功能介绍 强制启动一个图。针对导入、导出 、运行中 、清空中的图。强制重启图,会将该图执行中的异步任务变为失败,然后停止图、启动图到运行状态。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成S
全最短路(all_shortest_paths) 功能介绍 根据输入参数,执行全最短路算法。 全最短路(all_shortest_paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间所有的最短路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
强制重启图(2.2.21) 功能介绍 强制启动一个图。针对导入、导出 、运行中 、清空中的图。强制重启图,会将该图执行中的异步任务变为失败,然后停止图、启动图到运行状态。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成S
最短路径(shortest_path) 功能介绍 根据输入参数,执行最短路径算法。 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
单源最短路算法(sssp) 功能介绍 根据输入参数,执行单源最短路算法。 单源最短路算法是对于给定一个节点(称为源),给出从该源节点出发到其余各节点的最短路径长度。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
连通分量算法(Connected Component) 概述 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量(weakly connected compone
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。
k核算法(kcore) 功能介绍 根据输入参数,执行K核算法。 K核算法是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
Bigclam算法(bigclam) 功能介绍 根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{project_id
创建HyG图 功能介绍 创建一个HyG图。 GES持久化版的图计算依赖于HyG引擎,在执行算法之前需要创建HyG图,并将图数据库的数据同步到HyG引擎。 HyG组件当前通过白名单开放,请通过提交工单的方式申请。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}
业务服务的专用Region。 可用区(AZ,Availability Zone):一个AZ是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。
如果点被删除了,基于该点的边会怎么处理? GES基于属性图(Property graph)模型导入图数据,一个属性图是由点、边、标签(Label)和属性(Property)组成的有向图。 点又称作节点(Node),边又称作关系(Relationship),点和关系是最重要的实体。