检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
投机推理使用说明 什么是投机推理 传统LLM推理主要依赖于自回归式(auto-regressive)的解码(decoding)方式,每步解码只能够产生一个输出token,并且需要将历史输出内容拼接后重新作为LLM的输入,才能进行下一步的解码。为了解决上述问题,提出了一种投机式推理
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
使用前必读 在调用ModelArts API之前,请确保已经充分了解ModelArts相关概念,详细信息请参见产品介绍。 ModelArts提供了REST(Representational State Transfer)风格API,支持您通过HTTPS请求调用,调用方法请参见如何调用API。
如果训练数据保存在Notebook中,则将其打包成zip文件并上传到指定的obs_path中; 将训练作业提交到ModelArts训练服务中,训练作业会使用当前Notebook的镜像来执行训练作业; 训练任务得到的输出上传到4指定的obs_path中,日志上传到log_url指定的位置中。
conf sysctl -p | grep net.ipv4.ip_forward 步骤二 获取训练镜像 建议使用官方提供的镜像部署训练服务。镜像地址{image_url}参见镜像地址获取。 docker pull {image_url} 步骤三 启动容器镜像 启动容器镜像前请
查询Notebook支持的可切换规格列表 功能介绍 查询创建Notebook实例支持的可切换的规格列表。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI
鼠标移动至节点名称上,复制需要退订的实例ID。 图3 复制实例ID Server购买订单里绑定的资源ID为Server ID,与Server产品所封装的BMS/ECS ID不同,若要退订Server,需要在ModelArts控制台的“资源管理 > AI专属资源池 > 弹性节点Server”中查询对应ID。
费用账单 您可以在“费用中心 > 账单管理”查看资源的费用账单,以了解该资源在某个时间段的使用量和计费信息。 账单上报周期 包年/包月计费模式的资源完成支付后,会实时上报一条账单到计费系统进行结算。 按需计费模式的资源按照固定周期上报使用量到计费系统进行结算。按需计费模式产品根据
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
数据导入方式介绍 数据集创建完成后,您还可以通过导入数据的操作,接入更多数据。ModelArts支持从不同数据源导入数据。 从OBS导入数据到ModelArts数据集 从DLI导入数据到ModelArts数据集 从MRS导入数据到ModelArts数据集 从DWS导入数据到ModelArts数据集
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
在Notebook中通过镜像保存功能制作自定义镜像用于推理 场景说明 本文详细介绍如何将本地已经制作好的模型包导入ModelArts的开发环境Notebook中进行调试和保存,然后将保存后的镜像部署到推理。本案例仅适用于华为云北京四和上海一站点。 操作流程如下: Step1 在Notebook中复制模型包
查询API 功能介绍 查询指定API详情。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/app-auth/{service_id}/apis/{api_id}
查询APP的API认证信息 功能介绍 查询APP的API认证信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/serv
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
精度调优前准备工作 在定位精度问题之前,首先需要排除训练脚本及参数配置等差异的干扰。目前大部分精度无法对齐的问题都是由于模型超参数、Python三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。
按需计费 按需计费是一种先使用再付费的计费模式,适用于无需任何预付款或长期承诺的用户。本文将介绍按需计费资源的计费规则。 适用场景 按需计费适用于资源需求波动的场景,例如面向ToC业务的AIGC推理场景,客户业务量会随时间有规律的波动,按需计费模式能大幅降低客户的业务成本。可在运
执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info