检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
DeepSeek系列模型推理应用 DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导 DeepSeek蒸馏版模型基于ModelArts Lite Server适配vLLM的推理部署指导 基于MaaS DeepSeek API和Dify快速构建网站智能客服 基于MaaS
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
Gallery中,您可以查找并订阅免费满足业务需要的算法,直接用于创建训练作业。 AI Gallery中分享的算法支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署,管理控制台将根据实际使用情况收取硬件资源的费用。 前提条件 注册并登录华为云,且创建好OBS桶用于存储数据和模型。 订阅算法 登录“AI
KooSearch企业搜索服务:基于在MaaS开源大模型部署的模型API,搭建企业专属方案、LLM驱动的语义搜索、多模态搜索增强。 盘古数字人大脑:基于在MaaS开源大模型部署的模型API,升级智能对话解决方案,含智能客服、数字人。 Dify:支持自部署的应用构建开源解决方案,用于Agent编排、自定义工作流。
重要 实例扩容完成 (User %s updated storage size successfully) 重要 UpdateKeyPair 配置实例密钥对 (User %s updated the instance keypair to "{%s}") 重要 更新实例密钥对 (User
云上迁移适配故障 无法导入模块 训练作业日志中提示“No module named .*” 如何安装第三方包,安装报错的处理方法 下载代码目录失败 训练作业日志中提示“No such file or directory” 训练过程中无法找到so文件 ModelArts训练作业无法解析参数,日志报错
更新管理 ModelArts在线服务更新 对于已部署的推理服务,ModelArts支持通过更换模型的版本号,实现服务升级。 推理服务有三种升级模式:全量升级、滚动升级(扩实例)和滚动升级(缩实例)。了解三种升级模式的流程,请参见图1。 全量升级 需要额外的双倍的资源,先全量创建新版本实例,然后再下线旧版本实例。
计费说明 在ModelArts进行AI全流程开发时,会产生计算资源的计费,计算资源为进行运行自动学习、Workflow、开发环境、模型训练和部署服务的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 专属资源池 使用计算资源的用量。 具
让零AI基础的业务开发者可快速完成模型的训练和部署。 ModelArts自动学习,为入门级用户提供AI零代码解决方案 支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型
右方操作下的“停止”即可停止计费。 进入“ModelArts>模型部署>在线服务”页面,检查是否有“运行中”的推理作业。如果有,单击该作业列表右方操作下的“停止”即可停止计费。 进入“ModelArts>模型部署>批量服务”页面,检查是否有“运行中”的推理作业。如果有,单击该作业列表右方操作下的“停止”即可停止计费。
限制。这种场景下,建议找到原始镜像重新构建环境进行保存。 解决方法 找到原始镜像重新构建环境。建议使用干净的基础镜像,最小化的安装运行依赖内容,并进行安装后的软件缓存清理,然后保存镜像。 父主题: 自定义镜像故障
“名称”:设置此任务的名称。 “标注场景”:选择标注作业的任务类型。 “标签集”:展示当前数据集已有的标签及标签属性。 “启用团队标注”:选择打开,并配置如下团队标注相关参数。 “类型”:设置任务类型,支持“指定标注团队”或“指定标注管理员”。 “选择标注团队”:任务类型设置为“指定标注团队
进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。 FASP剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。
进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。 FASP剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。
计费项 自动学习/Workflow计费项 数据管理计费项 开发环境计费项 模型训练计费项 模型管理计费项 推理部署计费项 专属资源池计费项
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.904) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 父主题: LLM大语言模型训练推理
FAQ CUDA和CUDNN run.sh脚本测试ModelArts训练整体流程 ModelArts环境挂载目录说明 infiniband驱动的安装 如何保证训练和调试时文件路径保持一致 父主题: 专属资源池训练
发布和管理AI Gallery中的AI应用 发布本地AI应用到AI Gallery 将AI Gallery中的模型部署为AI应用 管理AI Gallery中的AI应用 父主题: AI Gallery(新版)
主流开源大模型基于LIte Server适配PyTorch NPU推理指导(6.3.905) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理