检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
管理模型文件 预览文件 在模型详情页,选择“模型文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在模型详情页,选择“模型文件”页签。单击操作列的“下载”,即可下载文件到本地。 删除文件 在模型详情页,选择“模型文
同时打开多个ipynb文件时,通过Tabs激活或选择文件。 Settings JupyterLab工具系统设置。 Help JupyterLab工具自带的帮助参考。 图15 ipynb文件菜单栏中的快捷键 表4 ipynb文件菜单栏中的快捷键 快捷键 说明 保存文件。 添加新代码块。 剪切选中的代码块。
系统盘 打开“存储配置”开关后,可以看到每个实例默认自带的系统盘的磁盘类型、大小或数量。 部分规格没有携带系统盘,在创建专属资源池时支持设置系统盘的磁盘类型和大小。 容器盘 打开“存储配置”开关后,可以看到每个实例自带的容器盘的磁盘类型、大小和数量。容器盘的类型只能是本地盘或云硬盘,不允许修改。
绑定完成后,通过MobaXterm、Xshell登录。以MobaXterm为例,填入弹性公网IP,登录节点。 图7 登录节点 方式2:通过华为云自带的远程登录功能 使用华为云账号登录CCE管理控制台。 在CCE集群详情页面,单击“节点管理”页签,在“节点”页签中单击需要登录的节点名称,跳转至弹性云服务器页面。
模型支持部署的服务类型。 版本数量 模型的版本数量。 请求模式 在线服务的请求模式。 同步请求:单次推理,可同步返回结果(约<60s)。例如: 图片、较小视频文件。 异步请求:单次推理,需要异步处理返回结果(约>60s)。例如: 实时视频推理、大视频文件。 创建时间 模型的创建时间。 描述
YOLOX 执行以下命令,去除Shell脚本的\r字符。 cd YOLOX sed -i 's/\r//' run.sh Shell脚本在Windows系统编写时,每行结尾是\r\n,而在Linux系统中行每行结尾是\n,所以在Linux系统中运行脚本时,会认为\r是一个字符,导致运行报错“$'\r':
执行以下命令,去除Shell脚本的\r字符。 cd Swin-Transformer sed -i 's/\r//' run.sh Shell脚本在Windows系统编写时,每行结尾是\r\n,而在Linux系统中行每行结尾是\n,所以在Linux系统中运行脚本时,会认为\r是一个字符,导致运行报错“$'\r':
准备数据集 进入AI Gallery,搜索8类常见生活垃圾图片数据集。 单击“下载”,选择云服务区域“华北-北京四”,单击“确定”进入下载详情页。 填写如下参数: 下载方式:ModelArts数据集。 目标区域:华北-北京四。 数据类型:图片。 数据集输出位置:用来存放输出的数据标注的相关
/home/ma-user/datasets 把上述代码文件、模型依赖包、数据集、Dockerfile文件都上传至ECS,上传步骤可参考本地Windows主机使用WinSCP上传文件到Linux云服务器。 文件上传后目录如下: <ECS_folder> ├── diffusers_sdxl_lora_train
Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
”。 图1 示例图片 添加指标查询信息。 图2 示例图片 添加方式:选择“按指标维度添加”。 指标名称:在右侧下拉框中选择“全量指标”,然后选择想要查询的指标,参考表1、表2 指标维度:填写过滤该指标的标签,请参考表4的Label名字栏。样例如下: 图3 示例图片 单击确定,即可出现指标信息。
把ascendcloud-aigc-poc-sdxl-finetune代码文件夹文件、模型依赖包、数据集、Dockerfile文件都上传至ECS,上传步骤可参考本地Windows主机使用WinSCP上传文件到Linux云服务器。 文件上传后目录如下: <ECS_folder> ├── attention_processor
当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_samples 否 Boolean 是否导入样本。可选值如下: true:导入样本(默认值)
CLI配置工具 当Gallery CLI配置工具包下载完成后,进入服务器安装工具。不管是ModelArts Lite云服务,还是本地Windows/Linux等服务器,安装操作都相同。 登录服务器,激活python虚拟环境。 conda activate [env_name] #
dataset_dir: /home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data 否,使用代码包自带数据集,注释掉dataset_dir参数,配置参数如下。 指令监督微调/PPO数据集 dataset: identity,alpaca_en_demo
dataset_dir: /home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data 否,使用代码包自带数据集,注释掉dataset_dir参数,配置参数如下。 指令监督微调/PPO数据集 dataset: identity,alpaca_en_demo
Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli
Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli