检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
选择数据 在使用通用图像分类工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于通用图像分类工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入已有数据集 前提条件 通用图像分类工作流
一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在“工业智能体控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,并训练模型,详情请见训练模型。
选择数据 在使用通用实体抽取工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入在自然语言处理套件其他应用中已创建的文本数据集。 新建数据集 导入数据集 前提条件 已在自然语言处理套件控制台选择“
一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并训练模型,详情请见训练模型。 整体评估 在“
选择数据 在使用零售商品识别工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于零售商品识别工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入数据集 前提条件 已在视觉套件控制台选择
难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评
自动标注数据 针对已经选择的数据和SKU,在应用开发的“数据标注”页面,ModelArts Pro会自动标注数据,自动标注完成后,可对每个数据的标注结果进行核对和确认。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并已执行到“SKU创建”步骤,详情请见创建SKU。
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。
标注数据 针对已经选择的数据,在应用开发的“数据标注”页面,ModelArts Pro会自动标注数据,自动标注完成后,可对每个数据的标注结果进行核对和确认。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,详情请见标注数据。 自动标注数据 在“数据标注”页面
上传模板图片 在使用单模板工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪张图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传某一格式的发票图片作为模板,训练的文字识别模型就能识别并提取同格式发票上的关键字段。 前提条件 已授权ModelArts服务和对象存储服务(OBS)。
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预训
得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并训练模型,详情请见训练模型。 整体评估 在
框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。
“日”/“” 在识别字段类型为出生日期的文字“2020年1月1日出生”时,首先不做预过滤,然后提取关键字符“2020年1月1日”,最后做后处理,最终提取内容为“2020.1.1”。 提取 对经过“预处理”的文字进行关键字符提取。 在输入框中填写查找关键字符的正则表达式。 不填写时,默认提取全部字段。
“日”/“” 在识别字段类型为出生日期的文字“2020年1月1日出生”时,首先不做预过滤,然后提取关键字符“2020年1月1日”,最后做后处理,最终提取内容为“2020.1.1”。 提取 对经过“预处理”的文字进行关键字符提取。 在输入框中填写查找关键字符的正则表达式。 不填写时,默认提取全部字段。
自然语言处理套件 自然语言处理套件为客户提供自然语言处理的自定制工具,旨在帮助客户高效地构建行业、领域的高精度文本处理模型,可应用于政府、金融、法律等行业。 自然语言处理套件提供了预置工作流,覆盖多种场景,支持自主上传训练数据,自主构建和升级高精度识别模型。用户自定义模型精度高,识别速度快。
“日”/“” 在识别字段类型为出生日期的文字“2020年1月1日出生”时,首先不做预过滤,然后提取关键字符“2020年1月1日”,最后做后处理,最终提取内容为“2020.1.1”。 提取 对经过“预处理”的文字进行关键字符提取。 在输入框中填写查找关键字符的正则表达式。 不填写时,默认提取全部字段。
选择数据 在使用通用文本分类工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入在自然语言处理套件其他应用中已创建的文本数据集。 新建数据集 导入数据集 前提条件 已在自然语言处理套件控制台选择“
标注数据 由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。 针对文本分类场景,是对文本的内容按照标签进行分类处理,标签名是由中文、大小写字母、数字、中划线或下划线组成,且不超过32位的字符串。 进入数据标注页面 在“
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于分类自己所上传的文字内容,也可直接调用对应的API。 部署服务