检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
的取值,作为识别结果。 自定义正则提取 预过滤 对初始的待识别文字进行预处理。 左边输入框填写待识别文字中被替换字符的正则表达式。 右边输入框填写所替换的新字符。 不填写时,默认不做预处理。 如果需要多次预处理,可单击,填写新增的预处理规则。 例如: “字段类型名称”:“出生日期”
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
图3 零售场景 物流场景 物流场景需要处理各种格式的票据图片,用户可以通过简单的标注生成自己的专属模板,实现关键字段的自动识别和提取。 特点:对各种格式的票据图片,可制作模板实现关键字段的自动识别和提取。 优势:支持不同格式票据图片的自动识别和结构化提取。通过可视化界面操作,轻松指
不同行业场景的业务数据,快速获得定制服务。此工作流仅支持对中文进行文本分类,且支持单标签分类和多标签分类。 适用场景 智能问答、舆情分析、内容推荐等场景。 优势 针对场景领域提供预训练模型,分类准确率高。 提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“云状识别工作流”新建应用,并训练模型,详情请见训练模型。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在ModelArts Pro控制台选择“HiLe
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“刹车盘识别工作流”新建应用,并训练模型,详情请见训练模型。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“无监督车牌检测工作流”新建应用,并训练模型,详情请见训练模型。
零售商品识别工作流 自主构建高精度的商品识别算法,帮助提高商品新品上线效率,提升消费者体验。 热轧钢板表面缺陷检测工作流 支持自主上传热轧钢板表面图片数据,构建热轧钢板表面缺陷类型的检测模型,用于识别热轧钢板表面图片中的缺陷类型。 云状识别工作流 支持上传多种云状图数据,构建云状的识别模型,用于高
文字识别套件 文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别模板图片中的文字,提供高精度的文字识别模型,保证结构化信息提取精度。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在“工业智能体控制台>工业AI开发>工业AI开发工作流
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并训练模型,详情请见训练模型。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流
在“数据标注”页面,会显示自动标注的进度,如果自动标注完成,标注进度为100%。 图1 自动标注完成。 标注完成后,您可以单击“标注结果确认”中的“前往确认”,进入标注概览页。 在标注概览页单击右上方的“开始标注”,进入手动标注数据页面,针对“已标注”的数据进行核对和检查。针对标注错误的数据修改标注。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”
续训练模型操作是基于您选择的训练数据集。 选择数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练安全帽检测模型。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1
在“数据标注”页面,会显示自动标注的进度,如果自动标注完成,标注进度为100%。 图1 自动标注完成。 标注完成后,您可以单击“标注结果确认”中的“前往确认”,进入标注概览页。 在标注概览页单击右上方的“开始标注”,进入手动标注数据页面,针对“已标注”的数据进行核对和检查。针对标注错误的数据修改标注。