检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
909) FLUX.1基于DevServer适配PyTorch NPU推理指导(6.3.909) Hunyuan-DiT基于DevServer部署适配PyTorch NPU推理指导(6.3.909) InternVL2基于DevServer适配PyTorch NPU训练指导(6.3.909)
OBS桶必须和MaaS服务在同一个Region下,否则无法选择到该OBS路径。 准备资源池 在ModelArts Studio大模型即服务平台进行模型调优、压缩或部署时,需要选择资源池。MaaS服务支持专属资源池和公共资源池。 专属资源池:专属资源池不与其他用户共享,资源更可控。在使用专属资源池之前,您
创建导入任务 功能介绍 创建数据集的导入任务:从存储系统导入样本、标签到数据集。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_
创建网络资源 功能介绍 创建网络资源。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/networks 表1 路径参数 参数
查询网络资源列表 功能介绍 查询网络资源列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/networks 表1 路径参数
deepseek-v2-236B deepseek-coder-v2-lite-16B Ascend-vllm支持如下推理特性: 支持分离部署 支持多机推理 支持大小模型投机推理及eagle投机推理 支持chunked prefill特性 支持automatic prefix caching
AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
在JupyterLab使用Git克隆代码仓 在JupyterLab中使用Git插件可以克隆GitHub开源代码仓库,快速查看及编辑内容,并提交修改后的内容。 前提条件 Notebook处于运行中状态。 打开JupyterLab的git插件 在Notebook列表中,选择一个实例,
查询工作空间列表 功能介绍 查询工作空间列表,响应消息体中包含详细信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/workspaces
查询数据集列表 功能介绍 根据指定条件分页查询用户创建的所有数据集。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/datasets
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
可视化作业的日志存储路径。 job_id Long 可视化作业的ID。 resource_id String 可视化作业的计费资源ID。 请求示例 如下以查询正在部署中的作业,按递增排序,显示第1页前10个可视化作业为例。 GET https://endpoint/v1/{project_id}/visualization-jobs
发过程中选择此专属资源池。 公共资源池:公共资源池提供公共的大规模计算集群,根据用户作业参数分配使用,资源按作业隔离。 用户下发训练作业、部署模型、使用开发环境实例等,均可以使用ModelArts提供的公共资源池完成,按照使用量计费,方便快捷。 专属资源池和公共资源池的能力主要差异如下:
mistral-7b 说明: 当前版本不支持推理量化功能(W4A16,W8A8) 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:AscendCloud-3rdAIGC SDXL模型: Fine-tuning微调支持Standard及DevServer模式
删除资源池 功能介绍 删除指定的资源池。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v2/{project_id}/pools/{pool_name}
查询资源池 功能介绍 查询指定资源池的详细信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/pools/{pool_name}
更新网络资源 功能介绍 更新指定网络资源。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PATCH /v1/{project_id}/networks/{network_name}
当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目ID和名称、获取帐号名和帐号ID和获取用户名和用户ID。 已准备好PyTorch框架的训练代码,例如将启动文件“test-pytorch
查询资源池列表,可通过标签、资源池状态筛选查询资源池列表 功能介绍 查询资源池列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/pools