检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x
能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x
能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x
6、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT
能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x
Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-user/work/tokenizers/llama-2-13b-chat-hf 可添加。该参数为tokenizer文件的存放地址。默认与ORIGINAL_HF_WEI
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表1。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0
及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x
6、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT
本与难度。 当您第一次使用MaaS服务时,可以参考快速入门使用ModelArts Studio的Qwen2-7B模型框架实现对话问答,了解如何在MaaS服务上的创建和部署模型。当您想更全面的了解MaaS服务的功能时,也可以参考最佳实践在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类。
图2 模型的自定义镜像制作场景二 场景三:预置镜像既不满足软件环境要求,同时需要放入模型包,新的镜像超过35G,在服务器(如ECS)上制作。具体案例参考在ECS中通过Dockerfile从0制作自定义镜像用于推理。 图3 模型的自定义镜像制作场景三 约束限制 自定义镜像中不能包含恶意代码。
本案例介绍如何将Notebook的Conda环境迁移到SFS磁盘上。 使用ModelArts VSCode插件调试训练ResNet50图像分类模型 MindSpore VS Code Toolkit工具 目标检测 本案例以Ascend Model Zoo为例,介绍如何通过VS Code插件及ModelArts
ata_dir参数二选一,详解如下: 参数 示例值 参数说明 dataset 【预训练:pt】预训练数据集相对或绝对地址 【微调:sft】微调数据集相对或绝对地址 训练时指定的输入数据路径。请根据实际规划修改。用户根据训练情况二选一; processed_data_dir /home/ma-user/ws/xxx
sft(指令微调) √ √ 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
rts不仅提供了在线代码开发环境,还提供了从数据准备、模型训练、模型管理到模型部署上线的端到端开发流程(即AI全流程开发)。 本文档介绍了如何在ModelArts管理控制台完成AI开发,如果您习惯使用API或者SDK进行开发,建议查看《ModelArts SDK参考》和《ModelArts
ModelArts支持使用ECS创建专属资源池吗? 不支持。创建资源池时,只能选择界面提供的“未售罄”节点规格进行创建。专属资源池的节点规格后台是对应的ECS资源,但是无法使用账号下购买的ECS,作为ModelArts专属资源池。 父主题: Standard专属资源池
ata_dir参数二选一,详解如下: 参数 示例值 参数说明 dataset 【预训练:pt】预训练数据集相对或绝对地址 【微调:sft】微调数据集相对或绝对地址 训练时指定的输入数据路径。请根据实际规划修改。用户根据训练情况二选一; processed_data_dir /home/ma-user/ws/xxx
通过VS Code远程使用Notebook实例 VS Code连接Notebook方式介绍 安装VS Code软件 VS Code一键连接Notebook VS Code ToolKit连接Notebook VS Code手动连接Notebook 在VS Code中上传下载文件 父主题: