检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
最小值:1 最大值:不同模型支持的token长度,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。 缺省值:默认部署时token长度最大值,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。 说明: token是指模型处理和生成文
本场景采用了下表中的推理参数进行解码,您可以在平台部署后参考如下参数调试: 表3 推理核心参数设置 推理参数 设置值 最大Token限制(max_token) 4096 温度(temperature) 0.3 核采样(top_p) 1.0 话题重复度控制(presence_penalty) 0 部署推理服务后,可以
本场景采用了下表中的推理参数进行解码,您可以在平台部署后参考如下参数调试: 表2 推理核心参数设置 推理参数 设置值 最大Token限制(max_token) 1024 温度(temperature) 0.3 核采样(top_p) 0.8 话题重复度控制(presence_penalty) 0 部署推理服务后,可以
步处理并最终输出答案,展示在前端界面。 在该框架中,query改写模块、中控模块和问答模块由大模型具体实现,因此涉及到大模型的训练、优化、部署与调用等流程。pipeline编排流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Sea
通用质量评估 针对文本进行通用质量的评估,例如流畅度、清晰度、丰富度等。 说明: 使用该清洗算子前,请确保有已部署的NLP大模型,具体步骤详见创建NLP大模型部署任务。 父主题: 数据集清洗算子介绍
要保障在图片中人眼能清晰辨别目标。 图片分辨率大于640x640 px,关于拍摄角度、距离、分辨率等画面拍摄条件,需要保证训练集图片和测试部署时的图片保持一致。 构建CV大模型数据集流程 在ModelArts Studio大模型开发平台中,使用数据工程构建盘古CV大模型数据集流程见表2。
数据、训练模型,依赖专家经验进行算法参数调优,最后才能上线应用。基于ModelArts Studio平台开发工作流,将数据标注、模型训练、部署上线等繁杂的流程固化为一个流水线的步骤。通过大模型的能力,即使只有少量样本,也可以达到良好的模型泛化性和鲁棒性,解决碎片化AI需求的问题。
型训练要求。通过平台提供的数据发布功能,用户能够根据具体任务需求,灵活选择数据发布格式,保证数据的兼容性与一致性,从而为后续模型训练和应用部署打下坚实基础。 支持数据发布的数据集类型 支持数据发布的数据集类型见表1。 表1 支持数据发布的数据集类型 数据类型 数据评估 数据配比 数据流通
数据工程介绍 数据工程介绍 数据工程是ModelArts Studio大模型开发平台(下文简称“平台”)为用户提供的一站式数据处理与管理功能,旨在通过系统化的数据获取、加工、发布等过程,确保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率,为大模型开发提供坚实的数据基础。