检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
保存多方安全计算作业 功能介绍 保存多方安全计算作业 调用方法 请参见如何调用API。 URI PUT /v1/{project_id}/leagues/{league_id}/sql-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于获取用户Token接口,如果调用后返回状态码为“201”,则表示请求成功。 响应消息头 对应请求消息头
数据集管理 查询空间已注册数据集列表 父主题: 空间API
可信节点管理 获取计算节点列表 获取计算节点详情信息 父主题: 空间API
实时预测 实时预测通过在计算节点部署在线预测服务的方式,允许用户利用POST请求,在毫秒级时延内获取单个样本的预测结果。 创建实时预测作业 执行实时预测作业 删除实时预测作业 父主题: 联邦预测作业
空间管理 获取空间详细信息 更新空间信息 查询空间节点列表 获取空间列表 获取空间组员信息 查询通知管理列表 父主题: 空间API
管理空间 查看空间详情 空间发起人登录TICS控制台。 进入TICS控制台后,单击页面左侧“空间管理”,进入空间管理页面。 在“空间管理”页打开“我参与的空间”页签,单击“空间名称”进入详情页。 查看空间统计信息 在详情页下方单击“空间概览”页签查看空间统计信息,该统计信息不是实时的
联邦预测作业 概述 批量预测 实时预测 查看作业计算过程和作业报告
概述 隐私求交是可信智能计算服务提供的安全获取参与双方所持数据交集的功能。它允许参与计算的双方,在不获取对方任何额外信息(除交集外的其它信息)的基础上,得到双方持有数据的交集。 单独使用场景 数据持有双方为获取己方与对方数据的交集,在不暴露其它数据的情况下,将需要获取交集的那一部分数据与对方的数据
查询特征选择执行结果 功能介绍 查询特征选择执行结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/features-selection-result
查询通知列表 功能介绍 本接口用于查询通知列表。 调用方法 请参见如何调用API。 URI GET /v1/agents/{agent_id}/notices 表1 路径参数 参数 是否必选 参数类型 描述 agent_id 是 String 可信计算节点id。 支持数字,英文字母
计算节点管理 部署计算节点 管理计算节点 管理实例 管理任务 管理文件 管理数据 审计日志 对接AOM日志服务 管理密钥
多方安全计算作业 创建作业 执行作业 查看作业计算过程和作业报告 删除作业 审批模式作业
批量隐匿查询 隐匿查询,也称隐私信息检索,是指查询方隐藏被查询对象关键词或客户id信息,数据服务方提供匹配的查询结果却无法获知具体对应哪个查询对象。数据不出门且能计算,杜绝数据缓存的可能性。 例如查询方希望查询身份证id为“张三”的人信贷公式数据,发起了一个类似于SELECT salary
实时隐匿查询 创建作业 审批实时隐匿查询作业 作业授权 执行作业 删除作业 父主题: 隐匿查询
使用场景 多方安全计算场景 纵向联邦建模场景 隐私求交黑名单共享场景 实时隐匿查询场景 可信数据交换场景 横向联邦学习场景
计算节点如何切换状态? 切换计算节点状态 用户需要计算节点短暂脱离空间,一段时间内不想被其他参与方使用自己的数据时,可以手动触发计算节点下线。即“计算节点状态”为“在线”时,触发单击下线,计算节点会切换成离线状态,180秒后空间其他参与方无法使用该计算节点已发布的数据集运行作业。
项目ID 获取项目ID 项目ID表示租户的资源,账号ID对应当前账号。用户可在对应页面下查看不同Region对应的项目ID和账号ID。 注册并登录管理控制台。 在用户名的下拉列表中单击“我的凭证”。 在“API凭证”页面,查看账号名和账号ID,在项目列表中查看项目ID。 调用API
准备工作简介 如果您是第一次使用TICS,需要完成以下准备工作: 注册账号并实名认证 配置CCE服务 购买TICS服务 授权IAM用户使用TICS 准备数据 启用区块链审计服务(可选) 父主题: 准备工作
概述 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行可信联邦学习