检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型
问答匹配的精确度,模型生成句子与实际句子相比的精确程度,数值越高,表明模型性能越好。 表2 NLP大模型自动评测指标说明-使用评测模板 评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力
产品功能 空间管理 数据工程 模型开发 Agent开发
数据量足够,为什么盘古大模型微调效果仍然不好 大模型使用类问题 如何将本地的数据上传至平台 导入数据过程中,为什么无法选中OBS的单个文件进行上传 训练/推理单元与算力的对应关系是什么 提示词工程类 如何让大模型按指定风格或格式回复 为什么其他大模型适用的提示词在盘古大模型上效果不佳 如何判断任务场景应通过调整提示词还是场景微调解决
Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身难度较大,建议您替换参数规模更大的模型。 父主题: 大模型微调训练类
退订属于高危操作,请确保您已保存所有必要的数据和进度,以避免不必要的损失。 扩缩容资源 ModelArts Studio大模型开发平台支持数据资源、训练资源、推理资源的扩缩容,即在当前资源的基础上扩充或缩小对应的资源。 资源扩缩容的步骤如下: 登录ModelArts Stud
部署科学计算大模型 创建科学计算大模型部署任务 查看科学计算大模型部署任务详情 管理科学计算大模型部署任务 父主题: 开发盘古科学计算大模型
评测NLP大模型 创建NLP大模型评测数据集 创建NLP大模型评测任务 查看NLP大模型评测报告 管理NLP大模型评测任务 父主题: 开发盘古NLP大模型
在Agent开发平台上,用户可以构建两种类型的应用: 知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能
盘古推理SDK简介 推理SDK概述 盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(/chat/completions)
适用于想自定义自己的区域模型的场景,需预先准备好区域高精度数据。 微调:在已有模型的基础上添加新数据,它适用于不改变模型结构参数和引入新要素的情况,添加最新数据的场景。 本实践将以平台预置的区域海洋要素基模型为例,介绍盘古科学计算大模型的微调训练过程,该模型的基本信息详见表1。 表1
在实际应用中,首次微调所得的模型往往无法取得最佳效果,为了让模型能更好地解决特定场景任务,通常需要根据微调所得模型的效果情况来进行几轮的模型微调优化迭代。 在大模型的微调效果调优过程中,训练数据优化、训练超参数优化、提示词优化以及推理参数优化是最重要的几个步骤。 训练数据的优化是提升模型效果的基础。
户提供通用云服务的Region;专属Region指只承载同一类业务或只面向特定租户提供业务服务的专用Region。 详情请参见区域和可用区。 可用区(AZ,Availability Zone) 一个AZ是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络、
一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练
两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。 标注文本类数据集 配比文本类数据集 数据配比是将多个数据集按特定比例组合的过程。通过合理的配比,确保数据集的多样性、平衡性和代表性,避免因数据分布不均而引发的问题。 配比文本类数据集 发布文本类数据集
Studio大模型开发平台针对视频类数据集预设了一套基础评估标准,涵盖了视频的清晰度、帧率、完整性、标签准确性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建视频类数据集评估任务。 创建视频类数据集评估标准步骤如下:
多个维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建文本类数据集评估任务。 创建文本类数据集评估标准步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建图片类数据集评估任务。 创建图片类数据集评估标准步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
请求体参数配置完成后,单击“调试”,在响应结果中单击“响应头”,其中,X-Subject-Token参数的值为获取到的Token,如图4。 图4 获取Token值 获取的文本翻译API调用地址。华北-北京四区域的调用地址的格式如下: https://nlp-ext.cn-north-4.myhuaweicloud
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。