检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
predictor configs结构 参数 是否必选 参数类型 描述 model_id 是 String 模型ID。“model_id”可以通过查询模型列表或者ModelArts管理控制台获取。 weight 是 Integer 权重百分比,分配到此模型的流量权重,仅当infe
当调用模型服务的API,返回状态码“429 Too Many Requests”时,表示请求超过流控,请稍后重新调用。 (可选)当免费Token额度用完后,还要继续使用该模型,可以付费部署为我的服务使用。 在“模型部署”页面,单击“我的服务”页签,在右上角单击的“部署模型服务”,进行相关配置。操作指导请参见使用Maa
/home/ma-user && \ chmod 770 /root && \ usermod -a -G root ma-user 其他现象,可以在已有的训练故障案例查找。 建议与总结 用户使用自定义镜像训练作业时,建议按照训练作业自定义镜像规范制作镜像。文档中同时提供了端到端的示例供用户参考。
download internet resources(不同局点的Notebook代理可能不同,此处为举例,请以Notebook所在局点的实际代理为准,可以在JupyterLab的Terminal中,通过env|grep -i proxy命令查看) ENV HTTP_PROXY=http://proxy
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其
benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \
pCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。 前提条件 提前部署在线服务,具体操作可以参考案例:使用ModelArts Standard一键完成商超商品识别模型部署。 操作步骤 在ModelArts控制台页面菜单栏中,单击“模型部署
predict(inputs)[0].get_data_to_numpy() print(outputs.shape) # (8, 1000) 动态分辨率 动态分辨率可以用于设置输入图片的动态分辨率参数。适用于执行推理时,每次处理图片宽和高不固定的场景,该参数需要与input_shape配合使用,input
会收费的实例已全部停止或删除,同时需清理运行Notebook实例时存储到云硬盘中的数据和其他存储到对象存储服务中的数据,以免继续扣费。 您可以在“费用中心 > 总览”页面设置“可用额度预警”功能,当可用额度、通用代金券和现金券的总额度低于预警阈值时,系统自动发送短信和邮件提醒。
clone的py文件变为ipynb文件? 在ModelArts的Notebook实例重启时,数据集会丢失吗? 在ModelArts的Notebook的Jupyterlab可以安装插件吗? 在ModelArts的Notebook的CodeLab中能否使用昇腾卡进行训练? 如何在ModelArts的Notebook的CodeLab上安装依赖?
calling 暂不支持。 在Dify中创建Agent进行编排,在右上角单击“Agent 设置”,选择上一步配置好的模型进行使用。 在Agent设置中可以看到Dify已自动将Agent Mode切换到了Function Calling模式。 图1 Agent设置 在“编排”页面的“提示词”文本框,输入以下信息。
服务运维和监控的实现步骤。 图3 司乘安全算法 将用户本地开发完成的模型,使用自定义镜像构建成ModelArts Standard推理平台可以用的模型。具体操作请参考从0-1制作自定义镜像并创建模型。 在ModelArts管理控制台,使用创建好的模型部署为在线服务。 登录云监控服
"property" : { "@modelarts:color" : "#3399ff" } } ] } 根据响应可以了解数据集详情,其中“status”为“1”表示数据集创建成功且状态正常。 调用查询样本列表接口根据数据集ID获取数据集的样本详情。 请求消息体:
如下图所示config文件,即为对应模型的eagle config文件。 图2 eagle config文件 步骤五:训练生成权重转换成可以支持vLLM推理的格式 将训练完成后的权重文件(.bin文件或. safetensors文件),移动到下载好的开源权重目录下(即步骤4中,config文件所在目录)。
cuDNN仅使用确定性的卷积算法。 工具固定(Dropout) Dropout的实质是以一定概率使得输入网络的数据某些位置元素的数值变为0,这样可以使得模型训练更加有效。但在精度问题的定位过程之中,需要避免产生这种问题,因此需要关闭Dropout。 在导入PrecisionDebugg
如下图所示config文件,即为对应模型的eagle config文件。 图2 eagle config文件 步骤五:训练生成权重转换成可以支持vLLM推理的格式 将训练完成后的权重文件(.bin文件或. safetensors文件),移动到下载好的开源权重目录下(即步骤4中,config文件所在目录)。
如下图所示config文件,即为对应模型的eagle config文件。 图2 eagle config文件 步骤五:训练生成权重转换成可以支持vLLM推理的格式 将训练完成后的权重文件(.bin文件或. safetensors文件),移动到下载好的开源权重目录下(即步骤4中,config文件所在目录)。
), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=obs_data)
--dtype:模型推理的数据类型。仅支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。 其他参数可以根据实际情况进行配置,也可使用openai接口启动服务。 推理启动脚本必须名为run_vllm.sh,不可修改其他名称。 hostname和port也必须分别是0
当前支持“按节点比例”和“按实例数量”两种滚动方式。 按节点比例:每批次驱动升级的实例数量为“节点比例*资源池实例总数”。 按实例数量:可以设置每批次驱动升级的实例数量。 对于不同的升级方式,滚动升级选择实例的策略会不同: 如果升级方式为安全升级,则根据滚动节点数量选择无业务的节点,隔离节点并滚动升级。