检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。
盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS
作为节点的输出。 判断节点:编排应用时作为分支切换节点,可以根据输入满足的判断条件,指定执行对应的工作流分支。 代码节点:用于引入代码执行器,根据节点的输入,执行指定Python代码,节点的输出是代码执行的结果信息。 知识检索节点:可以根据输入参数从指定知识库内召回匹配的信息。
停止计费 包周期服务到期后,保留期时长将根据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
退订属于高危操作,请确保您已保存所有必要的数据和进度,以避免不必要的损失。 扩缩容资源 ModelArts Studio大模型开发平台支持数据资源、训练资源、推理资源的扩缩容,即在当前资源的基础上扩充或缩小对应的资源。 资源扩缩容的步骤如下: 登录ModelArts Stud
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,
各节点的功能和设计思路: 开始节点:作为工作流的入口,开始节点负责接收用户输入的文本。无论是普通对话文本,还是包含翻译请求的文本,都将从此节点开始。 意图识别节点:该节点对用户输入的文本进行分类和分析,识别出用户的意图。主要包括以下两种意图: 文本翻译意图:系统识别出用户希望进行文本翻译的请求。
科学计算大模型微调训练所需的数据为气象再分析数据。 气象再分析数据集是利用现代数值天气预报模型和数据同化系统,对过去的观测数据进行重新处理后得到的。这些数据集可以是全球范围的,也可以是特定区域的。再分析数据集的目的是通过整合历史观测数据和现代计算技术,提供一个完整、统一且高质量的气象数据记录,
访问密钥”页面,依据界面操作指引获取Access Key(AK)和Secret Access Key(SK)。下载的访问密钥为credentials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
与非专业大模型相比,专业大模型针对特定场景优化,更适合执行数据分析、报告生成和业务洞察等任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的专业大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 模型支持区域 模型名称 说明 西南-贵阳一
根据自己的需求选取合适的大模型相关服务和产品,方便地构建自己的模型和应用。 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、数据合成、数据标注、数据评估、数据配比、数据发布和管理等功能。
本节介绍盘古大模型服务在使用过程中的约束和限制。 规格限制 盘古大模型服务的规格限制详见表1。 表1 规格限制 资产、资源类型 规格 说明 模型资产、数据资源、训练资源、推理资源 所有按需计费、包年/包月中的模型资产、数据资源、训练资源、推理资源。 购买的所有类型的资产与资源仅支持在西南-贵阳一区域使用。
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类
平台提供了知识库功能来管理和存储数据,支持为应用提供自定义数据,并与之进行互动。 知识库支持导入以下格式的本地文档: 文本文档数据。支持上传常见文本格式,包括:txt、doc、docx、pdf、ppt、pptx格式。 表格数据。支持上传常见的表格文件格式,便于管理和分析结构化数据,包括:xlsx、xls、csv格式。
数据托管单元按订购数量和时长预付费,提供1个月到1年供客户选择。 模型训练资源支持两种计费方式,包周期按订购数量和时长预付费,提供1个月到1年供客户选择;按需订购按单元使用数量和时长后付费,时长精确到秒。 模型推理资源按推理单元订购数量和时长预付费,提供1个月到1年供客户选择。
数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、数据合成、数据标注、数据评估、数据配比、数据流通和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和
发布文本类数据集 数据发布是将数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 文本类数据集支持发布的格式为: 标准格式:数据工程功能支持的原始格式。 标准格式的示例如下,其中,context和target是键值对。 {"context": "你好,请介绍自己"
通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将这些提示词发布至“提示词模板”中。 在提示词“候选”页面,选择质量好的提示词,并单击“保存到模板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词。 父主题:
填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 >