检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
import. - 异常 构建镜像失败。 Failed to build the image. 构建镜像失败原因较多,需根据具体的报错定位和处理问题。FAQ 异常 自定义镜像不支持指定依赖。 Customize model does not support dependencies
可以在Notebook中打开Terminal,通过命令uname -m查看。 下载对应版本的vscode-server,根据Commit码和Notebook实例镜像架构下载。 如果下载报错“Not Found”,请下载别的版本VS Code重新在本地安装,目前推荐: Vscode-1
绝大多数情况下,昇腾芯片推理性能相比于CPU会好很多,但是也可能会遇到和CPU推理性能并无太大差别甚至出现劣化的情况。造成这种情况的原因可能有如下几种: 模型中存在大量的类似于Pad或者Strided_Slice等算子,其在CPU和Ascend上的实现方法存在差异(硬件结构不同),后者在运算此类算子时涉及到数组的重排,性能较差;
性能调优总体原则和思路 PyTorch在昇腾AI处理器的加速实现方式是以算子为粒度进行调用(OP-based),即通过Python与C++调用CANN层接口Ascend Computing Language(AscendCL)调用一个或几个亲和算子组合的形式,代替原有GPU的实现
description="label task") 参数说明 表1 请求参数 参数 是否必选 参数类型 描述 task_name 是 String 标注任务的名称。 task_type 是 Integer 标注任务的类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体
} ] } } 配置文件 代码中request结构和response结构中的data参数是json schema数据结构。data/properties里面的内容对应“模型输入”和“模型输出”。 1 2 3 4 5 6 7 8 9 10 11
peed是一个开源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:[pt、sft、rm、ppo、dpo],pt代表预训练,sft代表指令监督微调,rm
I云服务进行全面适配和优化,使得精度和性能显著提升。开发者无需从零开始构建模型,只需选择合适的预训练模型进行微调或直接应用,减轻模型集成的负担。 零代码、免配置、免调优模型开发 平台结合与100+客户适配、调优开源大模型的行业实践经验,沉淀了大量适配昇腾,和调优推理参数的最佳实践
使用cuda版本为10的开发环境tf-1.13中编译生成的so包,在cuda版本为9.0训练环境中tf-1.12训练会报该错。 编译环境和训练环境的cuda版本不一致时,可参考如下处理方法: 在业务执行前加如下命令,检查是否能找到so文件。如果已经找到so文件,执行2;如果没有找到,执行3。
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。
本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts
ing 执行推理参考 配置服务化参数。Ascend vllm使用该特性需参考表1和表2,其它参数请启动推理服务。 启动服务。具体请参考启动推理服务。 精度评测和性能评测。具体请参考推理服务精度评测和推理服务性能评测。 父主题: 推理关键特性使用
ModelArts平台是否支持多模型导入? 在ModelArts中导入模型对于镜像大小有什么限制? ModelArts在线服务和批量服务有什么区别? ModelArts在线服务和边缘服务有什么区别? 在ModelArts中部署模型时,为什么无法选择Ascend Snt3资源? ModelAr
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。