检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ine-tuning)以优化模型性能的过程。 本文档主要介绍如何利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,对Stable Diffusion模型下不同数据集进行高性能训练调优,同时启用多卡作业方式提升训练速度,完成SD1.5 Finetune训练。
代表DPO训练。 finetuning_type full 用于指定微调策略类型,可选择值【full、lora】如果设置为"full",则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 dataset identity,alpaca_en_demo
流运行前配置存储根路径,并且可以根据开发者的目录编排规则在指定目录下查看输出的数据信息。此外同一个工作流的多次运行支持输出到不同的目录下,对不同的执行做了很好的数据隔离。 常用方式 InputStorage(路径拼接) 该对象主要用于帮助用户统一管理输入的目录,使用示例如下: import
OR:或操作 AND:与操作 property Map<String,Array<String>> 标签属性,是Object格式,存放任意的键值对;key是属性名称,value是取值列表,如value为null表示不根据值搜索,否则搜索的值满足列表中任意一个即可。 type Integer
key pair of the instance and try again. 当前用户没有权限使用ssh密钥对{0},请更新实例的密钥对并重新启动。 请更新实例的密钥对并重新启动。 400 ModelArts.6792 Instance {0} does not support
配置后重启推理服务生效。 Matmul_all_reduce融合算子 使用Matmul_all_reduce融合算子能提升全量推理性能,该算子对驱动和固件版本要求较高,默认不开启。如需开启,配置以下环境变量。 export USE_MM_ALL_REDUCE_OP=1 关闭Matmu
rl"。 表6 训练作业创建成功响应说明 参数 类型 描述 TrainingJob Object 训练对象,该对象包含job_id等属性,对训练作业的查询、更新、删除等操作时,可通过job_instance.job_id获取训练作业ID。 表7 调用训练接口失败响应参数 参数 类型
在Session1:在接收端执行-i卡id。 hccn_tool -i 7 -roce_test reset hccn_tool -i 7 -roce_test ib_send_bw -s 4096000 -n 1000 -tcp 在Session2:在发送端执行-i卡id,后面的ip为上一步接收端卡的ip。
算法uuid,创建算法时无需填写。 name String 算法名称。限制为1-64位只含数字、字母、下划线和中划线的名称。 description String 对算法的描述,默认为“NULL”,字符串的长度限制为[0, 256]。 workspace_id String 指定算法所处的工作空间,默认值为“0”。“0”
文字编辑图片 instruct-pix2pix 案例 AXYZdong Standard推理部署 上线二维码检测识别服务 林欣 使用ModelArts对8类常见生活垃圾进行分类 福州司马懿 使用ModelArts搭建"花卉种类识别"服务 福州司马懿
job_name 是 String 训练作业名称。限制为1-64位只含数字、字母、下划线和中划线的名称。 job_desc 否 String 对训练作业的描述,默认为“NULL”,字符串的长度限制为[0, 256]。 config 是 Object 创建训练作业需要的参数。详情请参见表3。
生效。 prompt 否 Boolean 是否需要再次提醒,该参数提供给前台console,用于让console判断是否需要再次弹出弹出框对用户进行提醒,默认是true。 响应消息 响应参数如表5所示。 表5 响应参数 参数 参数类型 说明 id String 实例ID。 name
dpo代表DPO训练。 finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all
dpo代表DPO训练。 finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all
必须开启此配置,否则精度会异常;其他模型不建议开启,因为性能会有损失。 如果需要增加模型量化功能,启动推理服务前,先参考推理模型量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
dpo代表DPO训练。 finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all
通过PTA_TORCHAIR_DECODE_GEAR_LIST设置动态分档位后,在PTA模式下,会根据服务启动时的max_num_seqs参数对档位进行调整,使得最终的最大档位为max_num_seqs,因此,请根据使用场景合理设置动态分档以及max_num_seqs参数,避免档位过大导致图编译错误。
通过PTA_TORCHAIR_DECODE_GEAR_LIST设置动态分档位后,在PTA模式下,会根据服务启动时的max_num_seqs参数对档位进行调整,使得最终的最大档位为max_num_seqs,因此,请根据使用场景合理设置动态分档以及max_num_seqs参数,避免档位过大导致图编译错误。
改,修改结果可以通过commit命令持久化。 上传镜像 客户端上传镜像,是指在安装了容器引擎客户端的机器上使用docker命令将镜像上传到容器镜像服务的镜像仓库。 如果容器引擎客户端机器为云上的ECS或CCE节点,根据机器所在区域有两种网络链路可以选择: 如果机器与容器镜像仓库在同一区域,则上传镜像走内网链路。
数据中加载batch的数据,最终将各个进程的梯度进行平均作为最终梯度,由于样本量更大,因此计算出的梯度更加可靠,可以适当增大学习率。 以下对resnet18在cifar10数据集上的分类任务,给出了单机训练和分布式训练改造(DDP)的代码。直接执行代码为多节点分布式训练且支持CP