检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
什么是区域、可用区 我们用区域和可用区来描述数据中心的位置,您可以在特定的区域、可用区创建资源。 区域(Region):从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。Region分为通用Region和专属Region
Access Management,简称IAM)提供华为云统一入口的鉴权功能。 与虚拟私有云的关系 图引擎服务使用虚拟私有云(Virtual Private Cloud,简称VPC)为集群提供网络拓扑,实现多个不同集群互相隔离并控制访问。 与对象存储服务的关系 图引擎服务使用对象存储服务(Object
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
全最短路径算法(All Shortest Paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的所有最短路径。 适用场景 全最短路径算法(All Shortest Paths)适用于路径设计、网络规划等场景。 参数说明 表1 全最短路径算法(All Shortest Paths)参数说明
GES软件版本:默认选择服务最新版本。 虚拟私有云:若您的账号下有vpc,会自动选择一个填充,您可以自行修改;若无vpc,则需要创建一个新的vpc,创建成功后,可自动填充。 子网:可进入VPC服务查看VPC下已创建的子网名称和ID,选择需要创建集群的子网。 其余各选项:使用系统默认即可。 图1 网络信息 图2
Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(Shortest Path)参数说明
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。
到source节点,因此可以基于source节点个性化地计算网络节点的相关性和重要性(PersonalRank值越高,对source节点的相关性/重要性越高)。 k核算法(k-core) k-core是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache
图实例创建完成后,您可以通过连接管理功能下载相应的SDK和驱动,以及查看图实例的连接信息。 在图引擎管理控制台,左侧导航栏选择“连接管理”,进入连接管理页面。 图1 连接管理 下载SDK和驱动 图2 SDK和驱动 您可以选择集群支持的CPU架构,单击“下载”按钮进行SDK的下载。 下载SDK和驱动: SDK:SDK
号。 选择网络信息,包含“虚拟私有云”、“子网”、“安全组”、“公网访问”和“企业项目”。 图2 网络信息 参数 说明 虚拟私有云 VPC即虚拟私有云,是通过逻辑方式进行网络隔离,提供安全、隔离的网络环境。 选择需要创建集群的VPC,单击“查看虚拟私有云”,可进入VPC服务查看已创建的VPC名称和ID。
中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域 参数说明 表1 Betweenness Centrality算法参数说明
带过滤的n_paths算法是给定起始点source、目的点target、跳数k、路径数n、过滤条件filters,找出source和target间不多于n条的k跳无环路径。 适用场景 任意网络。 参数说明 表1 filtered_n_paths参数说明 参数 是否必选 说明 类型 取值范围 默认值 source
由点、边、标签(Label)和属性(Property)组成的有向图。 点又称作节点(Node),边又称作关系(Relationship),点和关系是最重要的实体。 图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数
到source节点,因此可以基于source节点个性化地计算网络节点的相关性和重要性(PersonalRank值越高,对source节点的相关性/重要性越高)。 k核算法(k-core) k-core是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常
段的值。 通过ECS访问,但创建ECS的VPC和创建图选定的VPC不是同一个。需要对ECS所在的VPC和建图用的VPC创建VPC对等连接,创建VPC对等连接请参考创建对等连接。同时要在创建图的安全组开通该ECS的访问限制,即入方向放开80和443端口,出方向放开所有端口。这种场景,API的SERVER_URL为GES
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景
on:表示文件系统的挂载点。 网络 在网络页面,您可以根据节点和网卡名称浏览指定节点的网络资源实时消耗情况。其中包括:节点名称、网卡名称、网卡状态、接收丢包数、接收速率(KB/s)、发送速率(KB/s)和网络监控情况等。 图5 网络页 用户可单击指定节点名称所在行最右侧的“监控”按钮,进入网络监控概览
ource节点,因此可以基于source节点个性化地计算网络节点的相关性和重要性。(PersonalRank值越高,source节点的相关性/重要性越高)。 适用场景 PersonalRank算法适用于商品推荐、好友推荐和网页推荐等场景。 参数说明 表1 PersonalRank算法参数说明