检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
动(重启评测任务)和删除操作。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型评测”,可进行如下操作: 克隆。单击操作列的“ 克隆”,可以复制当前评测任务。 启动。单击操作列的“启动”,可以重启运行失败的评测任务。
况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
等,提高油气资源的开发利用效率。进行产能分级预测,例如预测油井的产能等级,优化油气生产计划。 电力行业:进行电力负荷预测,例如根据历史负荷数据,预测未来的电力负荷,优化电力生产和调度。 钢铁行业:进行钢水温度预测,例如预测钢水温度,提高浇注和连铸的准确性和效率。 2024年12月
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类别的交并比进行加权平均后得到的值,权重是每
同一资源是否同时支持包年/包月和按需计费两种模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费。 数据智算单元、数据通算单元默认采用按需计费。 训练单元采用包周期和按需计费两种方式。 两种计费方式不能共存,只支持按照一种计费方式进行订购。 父主题: 计费FAQ
间差距的指标。该值越小,表示模型在表面(海表)变量的预测精度越高。 RMSE 均方根误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的平方误差的平均值的平方根。该值越小,代表模型性能越好。 MAE 平均绝对误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的绝对误差的平均值。该值越小,代表模型性能越好。
合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通文本类数据集。 创建文本类数据集配比任务 创建文本类数据集配比任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
平均绝对误差是预测值与真实值之间绝对误差的均值。它同样用于衡量模型预测值与实际值之间的差异,数值越小,表明模型预测的准确性越高。 真实值和预测值 真实值和预测值在图表中的对比情况。 准确率 模型预测结果中,所有预测正确的样本占总样本的比例。数值越高,模型效果越好。 精准率 精准率是指在模型预测为正类的样本中,真
letions 请求消息头 附加请求头字段,如指定的URI和HTTP方法所要求的字段。例如,定义消息体类型的请求头“Content-Type”,请求鉴权信息等。 以下公共消息头需要添加到请求中。 Content-Type:消息体的类型(格式),必选,默认取值为“application/json”。
{Endpoint}为IAM的终端节点,可以从地区和终端节点获取。接口的认证鉴权请参见认证鉴权。 响应示例如下,例如,对话机器人服务部署的区域为“cn-north-4”,响应消息体中查找“name”为“cn-north-4”,其中projects下的“id”即为项目ID。 {
微调阶段:微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模
Boolean 是否仅统计输入字符的Token数 true:仅统计输入字符串的Token数; false:统计输入字符串和推理过程产生字符的总Token数。 响应参数 表4 响应Body参数 参数 参数类型 描述 tokens List<String> 分解出的Token列表。 token_number
可以尝试修改参数并查看模型效果。以修改“核采样”参数为例,核采样控制生成文本的多样性和质量: 当“核采样”参数设置为1时,保持其他参数不变,单击“重新生成”,再单击“重新生成”,观察模型前后两次回复内容的多样性。 图2 “核采样”参数为1的生成结果1 图3 “核采样”参数为1的生成结果2 将“核采样”参数调小至0.1
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。 获取训练日志
合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通图片类数据集。 创建图片类数据集配比任务 创建图片类数据集配比任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
在Agent开发平台上,用户可以构建两种类型的应用: 知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能
宽高比过滤 根据视频的宽高比进行过滤。 数据打标 视频鉴黄评分 对视频的涉黄程度进行评分,分数越高越危险。评分范围(0, 100),评分≥50分的视频可视为涉黄视频。 视频暴恐评分 对视频的暴恐程度进行评分,分数越高越危险。评分范围(0, 100),评分≥50分的视频可视为暴恐视频。
预置模型。 用户在平台中可试用、已订购的预置模型。 用户自行发布的模型。 用户可以将训练完成的模型发布为模型资产。发布的模型支持查看详细信息、编辑属性、删除、导出、导入等操作。 管理模型资产 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“空间资产
ModelArts Studio大模型开发平台为用户提供了多种规格的NLP大模型,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古NLP大模型规格 模型支持区域 模型名称 可处理最大上下文长度
其中,before文件夹:包含变化前的图片,每幅图片需与变化后的图片同名、同尺寸。 after文件夹:包含变化后的图片,每幅图片需与变化前的图片同名、同尺寸。 label文件夹:包含与变化前和变化后图片同名、同尺寸的PNG文件。每个像素值代表该位置对应的类别信息,类别应是连续的且从0开始。 视频分类