检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型管理 > 模型”页面中直接部署。 支持发布至市场 将产生的模型发布至AI
其他参数与正常启服务一致即可。具体参考本文单机场景下OpenAI服务的API接口启动在线推理服务方式。 推理请求测试 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见启动在线推理服务。 通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker
监控安全风险 ModelArts支持监控ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作。 云监控可以帮助用户更好地了解服务和模型的各项性能指标。 详细内容请参见ModelArts支持的监控指标。 父主题: 安全
在ModelArts notebook平台,Session鉴权无需输入鉴权参数;其它平台的Session鉴权请参考Session鉴权。 方式1:根据部署在线服务生成的服务对象进行更新服务配置 1 2 3 4 5 6 7 8 9 10 from modelarts.session
在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行查询服务日志 1 2 3 4 5 6 7 from modelarts.session import Session
在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行查询服务监控 1 2 3 4 5 6 7 from modelarts.session import Session
在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行服务详情查询 1 2 3 4 5 6 7 from modelarts.session import Session
elArts 使用kubectl连接集群,详细操作请参考通过kubectl连接集群。 配置Kubernetes的访问授权。 使用任意文本编辑器创建prometheus-rbac-setup.yml,YAML文件内容如下: 该YAML用于定义Prometheus要用到的角色(Clu
SDK,则需要在本地环境中安装ModelArts SDK,安装后可直接调用ModelArts SDK轻松管理数据集、创建ModelArts训练作业及创建AI应用,并将其部署为在线服务。 ModelArts SDK使用限制 本地ModelArts SDK不支持进行训练作业调测、模型调试和在开发环境中部署本地服务进行调
SDK下载文件目标路径设置为文件名,部署服务时报错 问题现象 ModelArts SDK在OBS下载文件时,目标路径设置为文件名,在本地IDE运行不报错,部署为在线服务时报错。 代码如下: session.obs.download_file(obs_path, local_path) 报错信息如下: 2022-07-06
ModelArts SDK目前仅支持在ModelArts开发环境Notebook和本地PC两种环境使用。 ModelArts SDK不支持在训练作业和在线服务中使用。 ModelArts SDK已经集成在ModelArts开发环境Notebook中,可以直接使用,无需进行Session鉴权。
单击操作列“部署>在线服务”,将模型部署为在线服务。 图6 部署在线服务 在“部署”页面,参考下图填写参数,然后根据界面提示完成在线服务创建。本案例适用于CPU规格,节点规格需选择CPU。如果有免费CPU规格,可选择免费规格进行部署(每名用户限部署一个免费的在线服务,如果您已经部
删除资源标签 功能介绍 删除服务(目前只支持在线服务)的标签,支持批量删除。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v1/{project_
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
infer_type 是 String 推理方式,取值为real-time/batch/edge。 real-time代表在线服务,将模型部署为一个Web Service,并且提供在线的测试UI与监控能力,服务一直保持运行。 batch为批量服务,批量服务可对批量数据进行推理,完成数据处理后自动停止。
API进行的Python封装,以简化用户的开发工作。用户直接调用ModelArts SDK即可轻松管理数据集、启动AI训练以及生成模型并将其部署为在线服务。 ModelArts SDK目前只提供Python语言的SDK,同时支持大于3.7.x版本且小于3.10.x版本的Python版本,推荐使用3
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模
tor,其运行环境就是cpu.2u。 部署在线服务Predictor,即将存储在OBS中的模型文件部署到线上服务管理模块提供的容器中运行,其环境规格(如CPU规格,GPU规格)由表3 predictor configs结构决定。 部署在线服务Predictor需要线上服务端根据A