检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts的Notebook中如何在代码中打印GPU使用信息? 在ModelArts的Notebook中JupyterLab的目录、Terminal的文件和OBS的文件之间的关系是什么? 如何在ModelArts的Notebook实例中使用ModelArts数据集? pip介绍及常用命令 在Mo
下载并安装AutoAWQ源码。 bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化
Notebook实例ID,可通过调用查询Notebook实例列表接口获取。 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 description 否 String 支持更新实例描述信息,长
thms 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 状态码:200 表2 响应Body参数 参数 参数类型 描述 search_algo_count Integer
描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workforce_task_id 是 String 团队标注任务ID。 请求参数 表2 请求Body参数 参数 是否必选 参数类型
数据集ID。 label_name 是 String 标签名称。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 label_type 否 Integer 标签类型。可选值如下: 0:图像分类
区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1 F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0
pull ubuntu:18.04 新建文件夹“self-define-images”,在该文件夹下编写自定义镜像的“Dockerfile”文件和应用服务代码“test_app.py”。本样例代码中,应用服务代码采用了flask框架。 文件结构如下所示 self-define-images/
model_id 是 String 需要删除的AI应用ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 cascade 否 Boolean 是否级联删除。默认为false,只删除当前
rces 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer 指定每一页返回的最大条目数,取值范围[1,100],默认为10。
or directory”。 提示找不到包等错误,请参见训练作业日志中提示“No module named .*”。 Ascend启动脚本和初始化脚本问题。 确认相关脚本是否来源于官方文档并且是否严格按照官方文档使用。比如确认脚本名称是否正常、脚本路径是否正常。具体请参见示例:从
itor 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 pool_name 是 String 系统生成的资源池名称。 表2 Query参数 参数 是否必选 参数类型 描述 time_range
whl # 构建最终容器镜像 FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 # 安装 vim和curl 工具(依然使用华为开源镜像站) RUN cp -a /etc/apt/sources.list /etc/apt/sources.list
pull ubuntu:18.04 新建文件夹“self-define-images”,在该文件夹下编写自定义镜像的“Dockerfile”文件和应用服务代码“test_app.py”。本样例代码中,应用服务代码采用了flask框架。 文件结构如下所示 self-define-images/
5的适配(包括0.5B、7B, 14B, 32B, and 72B),支持sft、lora、预训练。 文档中新增对Llama3.2的适配(包括1B和3B),支持sft、lora、预训练。 代码中ModelLink、MindSpeed已升级到最新版本,Python三方依赖版本已升级,其中:
Path参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 query请求参数 参数 是否必选 参数类型 说明 de_type 是 String 开发环境类型,当前仅支持Notebook,严格区分大小写。
} ] } } 配置文件 代码中request结构和response结构中的data参数是json schema数据结构。data/properties里面的内容对应“模型输入”和“模型输出”。 1 2 3 4 5 6 7 8 9 10 11
erty 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 service_id 是 String 服务ID。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token
/pile-val", split="validation") 运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers sentencepiece #安装量化工具依赖 export
描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 clear_hard_property 否 Boolean 是否清空难例属性。可选值如下: