检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
单模型性能调优AOE 使用AOE工具可以在模型转换阶段对于模型运行和后端编译过程进行执行调优,注意AOE只适合静态shape的模型调优。在AOE调优时,容易受当前缓存的一些影响,建议分两次进行操作,以达到较好的优化效果(第一次执行生成AOE的知识库,在第二次使用时可以复用)。在该
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成
在线服务预测报错ModelArts.4503 问题现象 在线服务部署完成且服务已经处于“运行中”的状态后,向运行的服务发起推理请求,报错ModelArts.4503。 原因分析及处理方法 服务预测报错ModelArts.4503有多种场景,常见场景如下: 通信出错 请求报错:{"
infiniband驱动的安装 infiniband驱动的安装 如果安装了libibverbs-dev库后仍然无法使能infiniband网卡,您可以直接安装infiniband官方驱动,以使用infiniband网卡进行分布式通信,提升训练性能。infiniband驱动需要在制作镜像时安装。
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
Notebook提示磁盘空间已满 问题现象 在使用Notebook时,提示磁盘空间已满:No Space left on Device。 在Notebook执行代码时,出现如下报错,提示:Disk quota exceeded。 原因分析 在JupyterLab浏览器左侧导航删除
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
日志提示“No space left on device” 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未
重试/停止/运行Workflow节点 重试/停止/继续运行Workflow节点 重试 当单个节点运行失败时,用户可以通过重试按钮重新执行当前节点,无需重新启动工作流。在当前节点的运行状况页面,单击“重试”。在重试之前您也可以前往权限管理页面修改配置,节点重试启动后新修改的配置信息可以在当前执行中立即生效。
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
Lite Server使用流程 ModelArts Lite Server提供多样化的xPU裸金属服务器,赋予用户以root账号自主安装和部署AI框架、应用程序等第三方软件的能力,为用户打造专属的云上物理服务器环境。用户只需轻松选择服务器的规格、镜像、网络配置及密钥等基本信息,即
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
依赖和委托 功能依赖 功能依赖策略项 您在使用ModelArts的过程中,需要和其他云服务交互,比如需要在提交训练作业时选择指定数据集OBS路径和日志存储OBS路径。因此管理员在为用户配置细粒度授权策略时,需要同时配置依赖的权限项,用户才能使用完整的功能。 如果您使用根用户(与账
模型适配 MindSpore Lite是华为自研的推理引擎,能够最大化地利用昇腾芯片的性能。在使用MindSpore Lite进行离线推理时,需要先将模型转换为mindir模型,再利用MindSpore Lite作为推理引擎,将转换后的模型直接运行在昇腾设备上。模型转换需要使用converter_lite工具。
IAM 介绍ModelArts所有功能涉及到的IAM权限配置。 IAM权限简介 如果您需要为企业中的员工设置不同的权限访问ModelArts资源,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(Identity and Access Management,简称IAM)进
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info