检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
R镜像下载至集群中,用“uid=1000, gid=100”的用户启动SWR镜像为容器,然后将OBS文件下载到容器中的“/home/mind/model”目录下,最后执行SWR镜像中预置的启动命令。ModelArts平台会在APIG上注册一个预测接口提供给用户使用,用户可以通过平台提供的预测接口访问服务。
访问在线服务支持的认证方式 通过Token认证的方式访问在线服务 通过AK/SK认证的方式访问在线服务 通过APP认证的方式访问在线服务 父主题: 将模型部署为实时推理作业
在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。 使用容器化部署,导
命令行自动补全是指用户可以在Terminal中输入命令前缀通过Tab键自动提示支持的ma-cli命令。ma-cli自动补全功能需要手动在Terminal中激活。执行ma-cli auto-completion命令,用户根据提示的补全命令,复制并在当前Terminal中执行,就可以自动补全ma-c
访问在线服务支持的访问通道 通过公网访问通道的方式访问在线服务 通过VPC访问通道的方式访问在线服务 通过VPC高速访问通道的方式访问在线服务 父主题: 将模型部署为实时推理作业
访问在线服务支持的传输协议 使用WebSocket协议的方式访问在线服务 使用Server-Sent Events协议的方式访问在线服务 父主题: 将模型部署为实时推理作业
标题信息,不填默认使用name algorithm=wf.AIGalleryAlgorithm(subscription_id="subscription_ID", item_version_id="item_version_ID"), # 训练使用的算法对象,示例中使用AIGallery订阅的算法
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
查看运行记录 您可以对当前工作流的所有运行记录,进行删除、编辑以及重新运行的操作。 删除:如果该条运行记录不再需要,您可以单击“删除”,在弹出的确认框中单击“确定”即可完成运行记录的删除。 编辑:如果您想对您当前的工作流下的所有运行记录进行区分,您可以单击“编辑”,对每一条运行记录添加相应的标签予以区分。
加入到用户组中。如果没有子用户账号,可以创建子账号并加入用户组。 创建子用户账号并加入用户组。在IAM左侧菜单栏中,选择“用户”,单击右上角“创建用户”,在“创建用户”页面中,添加多个用户。 请根据界面提示,填写必选参数,然后单击“下一步”。 在“加入用户组”步骤中,选择“用户组02”,然后单击“创建用户”。
普通用户:普通用户的委托权限包括了用户使用ModelArts完成AI开发的所有必要功能权限,如数据的访问、训练任务的创建和管理等。一般用户选择此项即可。 自定义:如果对用户有更精细化的权限管理需求,可使用自定义模式灵活按需配置ModelArts创建的委托权限。可以根据实际需在权限列表中勾选要配置的权限。
ma-cli ma-job训练作业支持的命令 使用ma-cli ma-job命令可以提交训练作业,查询训练作业日志、事件、使用的AI引擎、资源规格及停止训练作业等。 $ ma-cli ma-job -h Usage: ma-cli ma-job [OPTIONS] COMMAND
上述命令执行完成后,如果日志打印显示发布成功,则可前往ModelArts的Workflow页面中查看新发布的工作流,进入Workflow详情,单击“配置”进行参数配置。工作流相关的配置执行操作可参考如何使用Workflow。 基于release()方法,提供了release_and_run
在Workflow中更新已部署的服务 场景介绍 大部分场景下的工作流都是第一次运行部署新服务,后续进行模型迭代时,需要对已部署的服务进行更新。因此需要在同一条工作流中,同时支持服务的部署及更新能力。 编写工作流 基于编写工作流代码示例的场景案例进行改造,代码编写示例如下: from
用户使用ma-cli制作自定义镜像失败,报错文件不存在(not found) 问题现象 用户使用ma-cli制作自定义镜像失败,报错文件目录不存在。 图1 报错xxx not found 原因分析 复制的文件需要放在Dockerfile同级文件夹或者子目录中,不能放在Dockerfile上层目录。
使用自定义镜像创建的训练作业一直处于运行中 问题现象 使用自定义镜像创建训练作业,训练作业的“状态”一直处于“运行中”。 原因分析及处理办法 日志打印如下内容,表示自定义镜像的CPU架构与资源池节点的CPU架构不一致。 standard_init_linux.go:215: exec
将代码中的分布式改造点注释掉后即可进行单节点单卡训练。 训练代码中包含三部分入参,分别为训练基础参数、分布式参数和数据相关参数。其中分布式参数由平台自动入参,无需自行定义。数据相关参数中的custom_data表示是否使用自定义数据进行训练,该参数为“true”时使用基于torch自定义的随机数据进行训练和验证。
使用Qwen2.5-72B-1K、Qwen2.5-32B调优的Checkpoint创建模型时,权重校验失败 问题现象 使用Qwen2.5-72B-1K、Qwen2.5-32B调优的Checkpoint创建模型时,权重校验失败。 版本详情的报错信息如下: Insufficient storage
自定义镜像训练作业配置节点间SSH免密互信 当用户使用基于MPI和Horovod框架的自定义镜像进行分布式训练时,需配置训练作业节点间SSH免密互信,否则训练会失败。 配置节点间SSH免密互信涉及代码适配和训练作业参数配置,本文提供了一个操作示例。 准备一个预装OpenSSH的自定义镜像,使用的训练框架是MPI或Horovod。
监控周期 cpu_usage CPU使用率 该指标用于统计ModelArts用户服务的CPU使用率。 单位:百分比。 ≥ 0% ModelArts模型负载 1分钟 mem_usage 内存使用率 该指标用于统计ModelArts用户服务的内存使用率。 单位:百分比。 ≥ 0% ModelArts模型负载