检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决? 问题现象 或 VS Code连接Notebook一直提示选择证书,
Notebook中快速使用MoXing 本文档介绍如何在ModelArts中调用MoXing Framework接口。 进入ModelArts,创建Notebook实例 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间>Notebook”,进入“Notebook”管理页面
ModelArts入门实践 本章节列举了一些常用的实践案例,方便您快速了解并使用ModelArts完成AI开发。 表1 常用最佳实践 分类 实践案例 描述 适用人群 ModelArts Standard模型训练 基于ModelArts Standard上运行GPU训练任务 本案例介绍了如何使用
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持
从OBS目录导入数据规范说明 导入数据集时,使用存储在OBS的数据时,数据的存储目录以及文件名称需满足ModelArts的规范要求。 当前只有“图像分类”、“物体检测”、“图像分割”、“文本分类”和“声音分类”标注类型支持按标注格式导入。 其中,“表格”类型的数据集,支持从OBS、
开发用于预置框架训练的代码 当您使用ModelArts Standard提供的预置框架创建算法时,您需要提前完成算法的代码开发。本章详细介绍如何改造本地代码以适配ModelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数和训练输出路径参数
发布免费模型 在AI Gallery中,您可以个人开发的模型免费分享给他人使用,包括ModelArts模型和HiLens技能。 前提条件 如果是发布ModelArts模型,已经在ModelArts的“AI应用管理”中准备好待发布的模型。在“AI应用管理”界面创建或发布模型的相关操作请参见管理
(可选)配置镜像预热 Lite Cluster资源池支持镜像预热功能,镜像预热可实现将镜像提前在资源池节点上拉取好,在推理及大规模分布式训练时有效缩短镜像拉取时间。本文将介绍如何配置镜像预热功能。 操作步骤 在ModelArts控制台左侧导航栏中找到“资源管理 > AI专属资源池
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
发布和管理AI Gallery项目 在AI Gallery中,您可以将个人开发的Notebook代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts
免费资产和商用资产 AI Gallery既有免费分享的AI资产,也有商业售卖的AI资产。 免费资产无需支付费用,只需要支付在使用过程中消耗的硬件资源,硬件资源费用将根据实际使用情况由华为云ModelArts等管理控制台向使用方收取。 当前支持免费分享和订阅的资产类型有:Notebook
订阅Workflow 在AI Gallery中,您可以查找并订阅免费的Workflow。订阅成功的Workflow通过AI Gallery导入后可以直接在ModelArts控制台使用。 AI Gallery中分享的Workflow支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_type
发布Notebook 在AI Gallery中,您可以将个人开发的Notebook代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台。
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ