检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Notebook中快速使用MoXing 本文档介绍如何在ModelArts中调用MoXing Framework接口。 进入ModelArts,创建Notebook实例 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间>Notebook”,进入“Notebook”管理页面。 单击“创建”进入“创建
性能调优 Profiling数据采集 使用Advisor工具分析生成调优建议 调优前后性能对比 父主题: Dit模型PyTorch迁移与精度性能调优
om格式的模型转换能力,在ModelArts中逐步增加.mindir格式的支持能力。 下线模型转换后是否有替代功能? 您可以通过链接下载ATC模型转换工具,按照指导,在线下转换成.om格式模型。 ModelArts中是否还会增加模型转换的能力? ModelArts开发环境中在贵阳一Regio
/v1/{project_id}/dev-servers modelarts:devserver:create ecs:serverKeypairs:createecs:*:get iam:users:getUser iam:users:listUsers iam:projects:listProjects
仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在镜像详情页,选择“镜像文件”页签。单击操作列的“下载”,选择保存路径单击“确认”,即可下载文件到本地。 删除文件 在镜像详情页,选择“镜像文件”页签。单击操作列的“删除”,确认后即可将已经托管的文件从AI Gallery仓库中删除。 文件删除后不可恢复,请谨慎操作。
PyTorch迁移精度调优 精度问题概述 精度调优总体思路 精度调优前准备工作 msprobe精度分析工具使用指导 父主题: GPU训练业务迁移至昇腾的通用指导
在指定的训练输出的数据存储位置中保存Checkpoint,且“预下载至本地目录”选择“下载”。选择预下载至本地目录时,系统在训练作业启动前,自动将数据存储位置中的Checkpoint文件下载到训练容器的本地目录。 图1 训练输出设置 断点续训练建议和训练容错检查(即自动重启)功
重要 实例扩容完成 (User %s updated storage size successfully) 重要 UpdateKeyPair 配置实例密钥对 (User %s updated the instance keypair to "{%s}") 重要 更新实例密钥对 (User
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
模型的自定义镜像制作流程 在Notebook中通过镜像保存功能制作自定义镜像用于推理 在Notebook中通过Dockerfile从0制作自定义镜像用于推理 在ECS中通过Dockerfile从0制作自定义镜像用于推理 父主题: 制作自定义镜像用于ModelArts Standard
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
GPU推理业务迁移至昇腾的通用指导 简介 昇腾迁移快速入门案例 迁移评估 环境准备 模型适配 精度校验 性能调优 迁移过程使用工具概览 常见问题 推理业务迁移评估表 父主题: GPU业务迁移至昇腾训练推理
0:打标者 1:审核者 2:团队管理者 3:数据集拥有者 status Integer 标注成员的当前登录状态。可选值如下: 0:未发送邀请邮件 1:已发送邀请邮件但未登录 2:已登录 3:标注成员已删除 update_time Long 更新时间。 worker_id String
0:打标者 1:审核者 2:团队管理者 3:数据集拥有者 status Integer 标注成员的当前登录状态。可选值如下: 0:未发送邀请邮件 1:已发送邀请邮件但未登录 2:已登录 3:标注成员已删除 update_time Long 更新时间。 worker_id String
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
Server适配LlamaFactory PyTorch NPU训练指导(6.3.912) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
otebook中的文件上传至OBS,或者下载OBS中的文件至Notebook中。 图1 Notebook中上传下载OBS文件 使用OBS客户端上传文件的操作指导:上传文件 方法一:在Notebook中通过Moxing上传下载OBS文件 MoXing是ModelArts自研的分布式
tput_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练
tput_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练
tput_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练