检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
面向熟悉代码编写和调测的AI工程师 ModelArts Standard推理部署 使用Standard一键完成商超商品识别模型部署 本案例以“商超商品识别”模型为例,介绍从AI Gallery订阅模型,一键部署到ModelArts Standard,并进行在线推理预测的体验过程。 面向AI开发零基础的用户
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
获取用户名和用户ID 在调用接口的时候,部分请求中需要填入用户名(user name)和用户ID(user_id)。获取步骤如下: 注册并登录管理控制台。 鼠标移动至用户名,在下拉列表中单击“我的凭证”。 在“API凭证”页面,查看“IAM用户名”和“IAM用户ID”。 图1 获取用户名和ID
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
工作空间 ModelArts的用户需要为不同的业务目标开发算法、管理和部署模型,此时可以创建多个工作空间,把不同应用开发过程的输出内容划分到不同工作空间中,便于管理和使用。 工作空间支持3种访问控制: PUBLIC:租户(主账号和所有子账号)内部公开访问。 PRIVATE:仅创建者和主账号可访问。
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 父主题: LLM大语言模型训练推理
WEBUI套件适配PyTorch NPU的推理指导(6.3.908) SD WebUI推理方案概览 在DevServer上部署SD WebUI推理服务 在Standard上部署SD WebUI推理服务 SD WebUI推理性能测试 父主题: AIGC模型训练推理
low工作流、停止因运行Workflow工作流而创建的训练作业和部署的服务。同时,也需清理存储到OBS中的数据。 自动学习:自动学习运行时会收取费用,使用完请及时停止自动学习、停止因运行自动学习而创建的训练作业和部署的服务。同时,也需清理存储到OBS中的数据。 Notebook实例:
deploying:部署中,服务正在部署,调度资源部署等。 concerning:告警,后端实例异常,可能正在计费。例如多实例的情况下,有的实例正常,有的实例异常。正常的实例会产生费用,此时服务状态是concerning。 failed:失败,服务部署失败,失败原因可以查看事件和日志标签。
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理standard常见问题
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:Standard大模型推理常见问题
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:Standard大模型推理常见问题
ModelArts是面向AI开发者的一站式开发平台,能够支撑开发者从数据到AI应用的全流程开发过程,包含数据处理、算法开发、模型训练、模型部署等操作。并且提供AI Gallery功能,能够在市场内与其他开发者分享数据、算法、模型等。为了能帮用户快速准备大量高质量的数据,Model
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
调用API获取项目ID 从控制台获取项目ID和名称 从控制台获取项目ID(project_id)和名称(project name)的步骤如下: 注册并登录管理ModelArts控制台。 在页面右上角单击用户名,然后在下拉列表中单击“我的凭证”,进入“我的凭证”页面。 如果您登录的是华为
Gallery中,您可以查找并订阅免费满足业务需要的算法,直接用于创建训练作业。 AI Gallery中分享的算法支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署,管理控制台将根据实际使用情况收取硬件资源的费用。 前提条件 注册并登录华为云,且创建好OBS桶用于存储数据和模型。 订阅算法 登录“AI
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,