检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ntroller表示主控节点。 在服务器执行如下命令,判断docker是否安装成功。 systemctl status docker 在服务器执行如下命令,判断edge agent是否安装成功。 hdactl info 配置hda.conf配置文件信息(可选) 登录nfs服务节点,执行如下命令:
配置SDK 基础配置项 SDK依赖的配置项主要通过加载llm.properties配置文件。 在项目路径下,创建llm.properties文件,并根据实际需要配置相应的值。 在环境变量中配置“SDK_CONF_PATH”指向该配置文件: # 建议在业务项目入口处配置 import
配置SDK 基础配置项 SDK依赖的配置项主要通过读取llm.properties配置文件;如果配置文件名不为llm.properties,需要在项目中主动设置,方法如下: 在resources路径下,创建llm.properties文件,并根据实际需要配置相应的值。 如果需要自定义配置文件名,可以参考以下代码设置。
配置盘古访问授权 盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够正常的存储数据、训练模型,需要用户配置盘古访问OBS的权限。 使用主账号登录盘古大模型套件平台。 在左侧菜单选择“平台管理
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
配置AI助手工具 各种功能的API经封装后,将形成一个个工具,AI助手通过大模型来调用不同的工具,实现相应的功能。在创建AI助手前,需要将使用的功能封装为工具。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理
边缘服务部署流程 边缘部署是指将模型部署到用户的边缘设备上。这些设备通常是用户自行采购的服务器,通过ModelArts服务纳管为边缘资源池。然后利用盘古大模型服务将算法部署到这些边缘资源池中。 图1 边缘资源池创建步骤 当前仅支持预置模型(盘古-NLP-N2-基础功能模型)和基于
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
模型部署”,单击界面右上角“部署”。 在创建部署页面,完成部署配置,填写基本信息。 表1 部署配置参数 参数名称 说明 选择模型 选择需要部署的模型。 推理资源 选择非限时免费的模型时显示。选择盘古大模型服务提供的在线推理资产。 部署方式 选择“在线部署”,即将算法部署至盘古大模型服务提供的资源池中。
模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,设置模型类型、训练类型、训练模型、训练参数和checkpoints等参数。 其中,训练配置选择LLM(大语言模型),训练类型选择自监督训练,根据所选模型配置训练参数。 表1 自监督训练参数说明 参数名称 说明 模型类型
ns SDK配置:https://{endpoint}/v1/{project_id}/deployments/{deployment_id} (/chat/completions在SDK代码中已经进行了设置)。 IAM endpoint需要根据服务所在的区域正确配置,参考帮助文档“终端节点”章节查找。
可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题: 安全
模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,选择模型类型、训练类型、训练方式、训练模型与训练参数。 其中,训练配置选择LLM(大语言模型),训练类型选择有监督训练,根据所选模型配置训练参数。 表1 有监督微调参数说明 参数名称 说明 模型类型 选择“LLM”。
如,用vllm框架使用OpenAI-API启动推理服务。当前鉴权方式支持AppCode鉴权和华为云的APIG简易认证方式。配置文件需要指定url和key,配置项为: sdk.llm.openai.url=https://infer-app-modelarts-cn-southwest-2
部署为边缘服务 边缘服务部署流程 边缘部署准备工作 注册边缘资源池节点 搭建边缘服务器集群 安装Ascend插件 订购盘古边缘部署服务 部署边缘模型 调用边缘模型 父主题: 部署盘古大模型
环境准备 python3.9 及以上版本。 安装依赖的组件包, pip install pangu_kits_app_dev_py gradio。 盘古大语言模型。 开发实现 创建配置文件llm.properties, 正确配置iam和pangu配置项。信息收集请参考准备工作。 # # Copyright
过与用户多轮对话,实现会议室预订场景。 环境准备 Java 1.8。 参考安装章节,完成基础环境准备。 盘古大语言模型。 开发实现 创建配置文件llm.properties, 正确配置iam、pangu配置项。信息收集请参考准备工作。 # Copyright (c) Huawei
挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM 认证信息,根据实际填写 sdk.llm.pangu.iam.url= sdk
挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM 认证信息,根据实际填写 sdk.llm.pangu.iam.url= sdk
模型评估”。 单击界面右上角“创建评估任务”,进入评估任务创建页面。 图1 模型评估列表页面 填写评估任务所需的评估配置、评估数据和基本信息。 图2 创建评估任务 评估配置: 待评估模型:支持选择多个模型版本同时评估,最多选择5个。待评估模型必须符合前提条件。 评估资源:依据选择的模型数据自动给出所需的评估资源。