检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
修改msvd_eval.sh参数 修改scripts/video/eval/msvd_eval.sh中的参数 模型存放的地方,如果根据第2步的方式保存的模型,设置如下: CKPT="llama-vid/llama-vid-7b-full-224-video-fps-1" 调用openai的key,评
是否自动停止:为避免资源浪费,建议打开自动停止开关,根据您的实际需要,选择自动停止时间,也可以自定义自动停止的时间。 图3 选择计算节点规格 图4 设置自动停止 参数填写完毕之后,单击运行状况右边的“继续运行”,单击确认弹窗中的“确定”即可继续完成工作流的运行。 步骤五:预测分析 运行完成
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 任务ID。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 collect_key_sample 否 Boolean
service [Unit] Description=buildkitd After=network.target [Service] ExecStart=/usr/local/buildkit/bin/buildkitd [Install] WantedBy=multi-user
service [Unit] Description=buildkitd After=network.target [Service] ExecStart=/usr/local/buildkit/bin/buildkitd [Install] WantedBy=multi-user
open(txt_path, 'w') as file: file.write(data['prompt']) 步骤六:设置宿主机文件权限 chmod -R 777 ${work_dir} 步骤七:进入容器 通过容器名称进入容器中。默认使用ma-user用户执行后续命令。
service [Unit] Description=buildkitd After=network.target [Service] ExecStart=/usr/local/buildkit/bin/buildkitd [Install] WantedBy=multi-user
907版本新增如下内容: 文档和代码中新增对mistral和mixtral模型的适配,并添加训练推荐配置。 文档准备镜像步骤中,仅提供:直接使用基础镜像方案、ECS中构建新镜像方案,删除使用Notebook创建镜像方案。 文档中新增对 llama3 支持长序列文本(sequence_length >
/v2/{project_id}/datasets 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 data_format 否 String 数据格式。可选值如下:
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 status 否 Integer 数据集版本状态。可选值如下:
com/comfyanonymous/ComfyUI.git cd ComfyUI git checkout a82fae23757 如果上述方法无法下载ComfyUI源码,可参考如下操作,手动下载到本地再上传到容器中,如图1所示。 登录https://github.com/comf
InternVL/internvl_chat/shell/internvl2.0/2nd_finetune/ 步骤六:增加适配代码 表3 添加优化代码 模型 使用方法 internVL2-40B internVL2-40B模型需要执行下列步骤。 cd ${container_work_dir}/mult
Open-Clip基于DevServer适配PyTorch NPU训练指导 Open-Clip广泛应用于AIGC和多模态视频编码器的训练。 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾NPU计算资源开展Open-clip训练的详细过程。完成本方案的部署
input_shape="images:-1,3,640,640" ge.dynamicDims="1;8;16" 其中input_shape中的-1表示设置动态batch,ge.dynamicDims表示支持的batch值,上面的配置表示输入模型shape支持[1,3,640,640],[8,3