检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用户自定义镜像或者通过基础镜像导入的模型时,用户自己编写了很多自定义的业务逻辑,这些逻辑有问题将会导致服务部署或者预测失败,需要能够排查出哪里有问题。 处理方法 服务部署失败后,进入服务详情界面,查看服务部署日志,明确服务部署失败原因(用户代码输出需要使用标准输入输出函数,否则输出的内容不会呈现到
benchmark-tools访问推理客户端返回警告 解决方法: 减少参数--prompt-tokens和--output-tokens的值,或者增大启动服务的参数--max-model-len的值。 问题11:使用离线推理时,性能较差或精度异常 解决方法:将block_size大小设置为128 from vllm
benchmark-tools访问推理客户端返回警告 解决方法: 减少参数--prompt-tokens和--output-tokens的值,或者增大启动服务的参数--max-model-len的值。 问题11:使用离线推理时,性能较差或精度异常 解决方法:将block_size大小设置为128 from vllm
decrypt_func”指向自定义的解密方法的引用。程序加载时会通过import_lib加载认证凭据信息。 配置文件中配置密文的格式“iam_ak={Crypto}cipher”,其中cipher会在配置项读取认证凭据信息时被解析传递进decrypt_func方法中,进行解密。 其他类似自定义加密的方法,会在保存Token到本地时进行加密。
重,以提高推理效率。 压缩后模型名称 设置压缩后产生的新模型的名称。 支持1~64位,以中文、大小写字母开头,只包含中文、大小写字母、数字、下划线(_)、中划线(-)和(.)。 参数设置 平滑系数/Migration Strength 设置SmoothQuant量化的迁移系数,仅
/v1/{project_id}/dev-servers 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 admin_pass 否 String 用于
在本地PC的hosts文件中配置域名和IP地址的对应关系。 三、网络代理设置 如果用户使用的网络有代理设置要求,请检查代理配置是否正确。也可以使用手机热点网络连接进行测试排查。 检查代理配置是否正确。 图2 PyCharm网络代理设置 四、AK/SK不正确 获取到的AK/SK信息不正确,请确认
k/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
选择数据集额外支持的运行平台。 设置运行平台后,当资产上架后,该资产支持通过订阅的方式同步到所选运行平台使用。 设置运行平台后,单击“设置”,在弹窗中可以自定义设置运行平台的资产标签,且标签可以被一起同步至运行平台。 数据集描述 - 资产的README内容,支持添加资产的简介、使用场景、使用方法等信息。
k/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
k/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
k/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
/v2/{project_id}/pools 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-ModelArts-User-ID 否
参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status
输。 前提条件 用户需有一定的Java开发经验,熟悉jar打包流程。 用户需了解WebSocket协议的基本概念及调用方法。 用户需熟悉Docker制作镜像的方法。 约束与限制 WebSocket协议只支持部署在线服务。 只支持自定义镜像导入模型部署的在线服务。 准备工作 Mod
k/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
k/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
“写入模式”,包括线性和条带化。 以本地持久卷挂载:支持“持久卷写入模式”设置,包括线性和条带化,此处设置的是所有数据盘的写入模式。 以临时存储卷挂载:支持“临时卷写入模式”设置,包括线性和条带化,此处设置的是所有数据盘的写入模式。 新增规格 - 支持添加多个规格。限制如下: 当
k/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
k/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"