检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
启动或停止Lite Server服务器 当您暂时不需要使用弹性节点Server的时候,可以通过对运行中的裸金属实例进行停止操作,停止对资源的消耗。当需要使用的时候,对于停止状态的弹性节点Server,可以通过启动操作重新使用弹性节点Server。 登录ModelArts管理控制台。
om,引擎包选择步骤3构建的镜像。 图3 创建模型 将创建的模型部署为在线服务,大模型加载启动的时间一般大于普通的模型创建的服务,请配置合理的“部署超时时间”,避免尚未启动完成被认为超时而导致部署失败。 图4 部署为在线服务 调用在线服务进行大模型推理,请求路径填写/v2/mod
修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
API文档以及常用的Python编码,您可以参考本章节使用MoXing Framework的一些进阶用法。 读取完毕后将文件关闭 当读取OBS文件时,实际调用的是HTTP连接读取网络流,注意要记得在读取完毕后将文件关闭。为了防止忘记文件关闭操作,推荐使用with语句,在with语句退出时会自动调用mox.file
修改服务个性化配置 服务个性化配置规则由配置条件、访问版本、自定义运行参数(包括配置项名称和配置项值)组成。 您可以为在线服务的不同版本设定不同配置条件,并支持携带自定义运行参数。 个性化配置规则的优先级与顺序相对应,从高到低设置。您可以通过拖动个性化配置规则的顺序更换优先级。
必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者
单击“添加授权”后,系统会引导您为特定用户或所有用户进行委托配置,通常默认会创建一个名为“modelarts_agency_<用户名>_随机ID”的委托条目。在权限配置的区域,您可以选择ModelArts提供的预置配置,也可以自定义选择您所授权的策略。如果这两种形态对于您的诉求均
修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
在ModelArts控制台的“全局配置”页面,单击“添加授权”后,系统会引导您为特定用户或所有用户进行委托配置,通常默认会创建一个名为“modelarts_agency_<用户名>_随机ID”的委托条目。在权限配置的区域,您可以选择ModelArts提供的预置配置,也可以自定义选择您所授权
修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
yaml文件参数配置,样例yaml配置文件结构如下: base块:基础配置块,主要为公共配置参数 ModelName块:该模型所需配置的参数,如qwen2.5-7b块 exp_name:实验块,训练策略-序列长度所需参数配置 样例yaml文件仅展示常用实验配置,如需其他配置需根据样例自行添加。
nvidia-fabricmanager版本号必须和nvidia-driver版本号保持一致,可参考安装nvidia-fabricmanager方法。 NCCL必须和CUDA版本相匹配,可单击此处可查看配套关系和安装方法。 使用该裸金属服务器制作自定义镜像时, 必须清除残留文件,请参考清理文件。 父主题:
accuracy_cfgs.yaml eval_dataset: gsm8k_test 样例yaml配置文件结构分为 base块:基础配置块 ModelName块:该模型所需配置的参数,如qwen2.5-7b块 样例截图如下: 开始训练测试,具体步骤参考训练性能测试或训练精度测试,根据实际情况决定。
模型转换报错如何查看日志和定位? 通过如下的配置项打开对应的模型转换日志,可以看到更底层的报错。如配置以下的环境变量之后,再重新转换模型,导出对应的日志和dump图进行分析: 报错日志中搜到“not support onnx data type”,表示MindSpore暂不支持该算子。
accuracy_cfgs.yaml eval_dataset: gsm8k_test 样例yaml配置文件结构分为 base块:基础配置块 ModelName块:该模型所需配置的参数,如qwen2.5-7b块 样例截图如下: 开始训练测试,具体步骤参考训练性能测试或训练精度测试,根据实际情况决定。
游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 准备工作 参考benchmark-准备工作,开始训练测试,具
必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者
k_timeout:939 callbacks suppressed"。 原因分析 根据SFS客户端日志分析出现问题的时间点发现,SFS盘连接的客户端个数较多,在问题的时间点并发读取数据,I/O超高;当前SFS服务端的机制是:当SFS盘的性能到上限时,就会IO排队。IO排队造成处理时间超过
上传数据和算法至OBS(首次使用时需要) 前提条件 已经在OBS上创建好并行文件系统,请参见创建并行文件系统。 已经在obsutil安装和配置,请参见obsutils安装和配置。 准备数据 单击下载动物数据集至本地,并解压。 通过obsutil将数据集上传至OBS桶中。 ./obsutil cp
CUDA is not enabled” 原因分析 出现该问题的可能原因如下: 新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。