检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
宽高比过滤 根据视频的宽高比进行过滤。 数据打标 视频鉴黄评分 对视频的涉黄程度进行评分,分数越高越危险。评分范围(0, 100),评分≥50分的视频可视为涉黄视频。 视频暴恐评分 对视频的暴恐程度进行评分,分数越高越危险。评分范围(0, 100),评分≥50分的视频可视为暴恐视频。
训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 困惑度 用来衡量大语言模型预测一个语言样本的能力,数值越低,准确率也就越高,表明模型性能越好。
充分利用盘古大模型的功能。通过该平台,企业可根据需求选择合适的盘古NLP大模型、科学计算大模型等服务,便捷地构建自己的模型和应用 数据工程工具链:数据是大模型训练的核心基础。数据工程工具链作为平台的重要组成部分,具备数据获取、清洗、配比和管理等功能,确保数据的高质量与一致性。工具
用、监管有力的制度,并加强对专项资金的监督和管理。严格控制专项资金的流向和使用范围,严禁有过度功能的行为,坚决杜绝虚假、虚报和恶意投资,建立完善的监督管理制度,加强随时的监督和核查,确保专项资金使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如
度减少人工标注的工作量和时间成本。此外,AI预标注不仅提高了标注效率,还能减少人为错误,提高标注的一致性和准确性。标注质量的提高直接增强了训练数据的有效性,确保训练模型时能获得更高质量的学习数据,从而推动模型性能的提升。 数据评估:数据的质量直接决定了大模型的表现,因此,数据质量
李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让李晓对她产生了深深的喜爱。他还遇到了一位名叫王安石的大儒,他的智慧和博学让李晓深
如果您需要为企业员工设置不同的访问权限,以实现功能使用权限和资产的权限隔离,可以为不同员工配置相应的角色,以确保资产的安全和管理的高效性。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可以跳过本章节,不影响您使用盘古的其他功能。 您可以使用统
filename 是 被标注文件的文件名。 size 是 表示图像的像素信息。 width:必选字段,图像的宽度。 height:必选字段,图像的高度。 depth:必选字段,图像的通道数。 图像的通道数是指图像中每个像素的颜色信息的维度。常用的RGB图像默认有3个通道。3通道表
高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。 在ModelArts
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
访问密钥”页面,依据界面操作指引获取Access Key(AK)和Secret Access Key(SK)。下载的访问密钥为credentials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。
素进行训练。请注意,所选的数据集必须包含您想要添加的新要素。此外,您还可以通过训练更改所有的模型参数,以优化模型性能。 微调:微调是将新数据应用于已有模型的过程。它适用于不改变模型结构参数和引入新要素的情况。如果您有新的观测数据,可以使用微调来更新模型的权重,以适应新数据。 区域
提示词工程 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“横向比较”。 图2 横向比较 进入到横向比较页面,下拉页面至“提示词效果比较”模块,比较提示词的效果,输入相同的变量值,查看两个提示词生成的结果。 图3 横向比对提示词效果 父主题:
撰写所需提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为
ss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将这些提示词发布至“提示词模板”中。 在提示词“候选”页面,选择质量好的提示词,并单击“保存到模板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词。 父主题:
意输出格式中的key不要有语义重复,并且需要与前文要求中的key名字保持一致,否则模型会不理解是同一个key。 恰当的表述 可以尝试从英语的逻辑去设计提示词。 最好是主谓宾结构完整的句子,少用缩写和特殊句式。 应使用常见的词汇和语言表达方式,避免使用生僻单词和复杂的句式,防止机器理解偏差。
调用说明 盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
5个。 配置“高级配置”中的相关信息。 高级配置项供进阶开发者修改模型和提示词,如果不配置将会使用系统默认值。模型的选择和提示词的撰写可能影响到意图分类组件的准确性。 模型选择:选择要使用的LLM,不同的模型效果存在差异。 Prompt提示词:用户对模型的指令,提示词可能影响模型效果。
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。