检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
模型镜像。 服务运维阶段,先利用镜像构建模型,接着部署模型为在线服务,然后可在云监控服务(CES)中获得ModelArts推理在线服务的监控数据,最后可配置告警规则实现实时告警通知。 业务运行阶段,先将业务系统对接在线服务请求,然后进行业务逻辑处理和监控设置。 图1 推理服务的端到端运维流程图
统一管理AI开发全流程,提升开发效率,记录模型构建实验全流程。 多场景部署,灵活满足业务需求 支持云端/边端部署等多种生产环境。 支持在线推理、批量推理、边缘推理多形态部署。 AI工程化能力,支持AI全流程生命周期管理 支持MLOps能力,提供数据诊断、模型监测等分析能力,训练智能日志分析与诊断。
--url:API接口公网地址与"/v1/completions"拼接而成,部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingF
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
PyTorch、TensorFlow和MindSpore等引擎的AI模型。 支持通过JupyterLab工具在线打开Notebook,具体请参见通过JupyterLab在线使用Notebook实例进行AI开发。 支持本地IDE的方式开发模型,通过开启SSH连接,用户本地IDE可以
配置信息。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 “启动命令” 选填参数,指定模型的启动命令,您可以自定义该命令。 如果使用预
像无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 说明: 建议写清楚模型的使用方法,方便使用者更好的完成训练、推理任务。 表2 任务类型支持的AI Gallery工具链服务 任务类型 微调大师 在线推理服务 AI应用 文本问答/文本生成 支持 支持 支持 其他类型
一个账号最多创建10个Notebook。 否 更多信息,请参见创建Notebook实例。 Standard推理部署在线服务 单个账号最多可创建20个在线服务。 是 提交工单申请提升配额 更多信息,请参见部署在线服务。 Standard推理部署批量服务 单个账号最多可创建1000个批量服务。 否 更多信息,请参见部署批量服务。
表5 Monitor 参数 参数类型 描述 failed_times Integer 模型实例调用失败次数,在线服务字段。 model_version String 模型版本,在线服务字段。 cpu_memory_total Integer 总内存,单位MB。 gpu_usage Float
存需求增多。 处理方法 在部署或升级在线服务时,选择更大内存规格的计算节点。 图3 选择计算节点规格 运行中服务出现告警时,需要分析是您的代码是否出现漏洞导致内存溢出、是否因为业务使用量太大需要更多的内存。如果因业务原因需要更多内存,请升级在线服务选择更大内存规格的计算节点。 父主题:
服务当前运行所用配置的更新时间,距“1970.1.1 0:0:0 UTC”的毫秒数。 debug_url String 在线服务在线调试地址,只有当模型支持在线调试且只有一个实例的时候会存在。 due_time Number 在线服务自动停止时间,距“1970.1.1 0:0:0 UTC”的毫秒数,未配置自动停止则不返回。
服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout
模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题: 服务部署
将模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测
om格式的模型转换能力,在ModelArts中逐步增加.mindir格式的支持能力。 下线模型转换后是否有替代功能? 您可以通过链接下载ATC模型转换工具,按照指导,在线下转换成.om格式模型。 ModelArts中是否还会增加模型转换的能力? ModelArts开发环境中在贵阳一Region,支持将ONNX或PyTorch模型转换到