检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LabelAttribute objects 标签的多维度属性,如标签为“音乐”,可能包含属性“风格”、“歌手”等。 name 否 String 标签名称。 property 否 LabelProperty object 标签基本属性键值对,如颜色、快捷键等。 type 否 Integer
-F 'images=@图片路径' -H 'X-Auth-Token:Token值' -X POST 在线服务地址 “-k”是指允许不使用证书到SSL站点。 “-F”是指上传数据的是文件,本例中参数名为“images”,这个名字可以根据具体情况变化,@后面是图片的存储路径。 “-
Pytorch Mox日志反复输出 问题现象 ModelArts训练作业算法来源选用常用框架的Pytorch引擎,在训练作业运行时Pytorch Mox日志会每个epoch都打印Mox版本,具体日志如下: INFO:root:Using MoXing-v1.13.0-de803ac9
使用PyCharm ToolKit创建并调试训练作业 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Note
训练作业性能降低 问题现象 使用ModelArts平台训练算法训练耗时增加。 原因分析 可能存在如下原因: 平台上的代码经过修改优化、训练参数有过变更。 训练的GPU硬件工作出现异常。 处理方法 请您对作业代码进行排查分析,确认是否对训练代码和参数进行过修改。 检查资源分配情况(
使用PyCharm Toolkit插件连接Notebook 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接N
标签的多维度属性,如标签为“音乐”,可能包含属性“风格”、“歌手”等。 count Integer 该标签的打标数量。 name String 标签名称。 property LabelProperty object 标签基本属性键值对,如颜色、快捷键等。 sample_count Integer
ModelArts Standard支持用户构建自定义镜像用于模型训练。 自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置框架无法满足需求,否则不推荐使用。自定义镜像需上传至容器镜像服务(SWR),才能用于ModelArts Standard上训练。 自定义镜像的启动命令规范
MA_JOB_DIR 训练算法文件夹所在的父目录。 “MA_JOB_DIR=/home/ma-user/modelarts/user-job-dir” MA_MOUNT_PATH ModelArts挂载至训练容器内的路径,用于临时存放训练算法、算法输入、算法输出、日志等文件。 “M
的标签是否准确。勾选标注不准确的图片,删除错误标签,然后在右侧“标签名”处添加准确标签。单击“确认”,勾选的图片及其标注情况,将呈现在“已标注”页签下。 选中的图片为标注错误图片,在右侧删除错误标签,然后在标签名处添加“狗”的标签,然后单击“确认”,完成难例确认。 将数据集中的数据标注为难例
当前支持的数据类型包括:int、str、bool、float、Enum、dict、list。开发者可根据场景需要,将节点中的相关字段(如算法超参)通过Placeholder的形式透出,支持设置默认值,供用户修改配置使用。 属性总览(Placeholder) 属性 描述 是否必填
使用VS Code创建并调试训练作业 由于AI开发者会使用VS Code工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境、贴近本地开发习惯地编写启动命令,ModelArts提供了一个训练作业场景下的IDE插件ModelArts-HuaweiCloud,用
in certificate chain 图1 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git clone -c http.sslVerify=false https://github.com/Rudrabha/Wav2Lip
Codelab使用Standard Notebook实例进行AI开发。 如果您有自己的算法,想改造适配后迁移到ModelArts Standard平台上进行训练和推理,您可以参考使用自定义算法构建模型(手写数字识别)。 更多入门实践,请参考《ModelArts入门实践》章节。如果
步骤一:下载ModelArts SDK 下载ModelArts SDK软件包,获取最新版本的ModelArts SDK软件包。 (可选)完成软件包签名校验。 下载软件包签名校验文件。 安装openssl并进行软件一致性验证,具体验签命令如下: openssl cms -verify -binary -in
Object> 数据集的样本统计信息,包括样本元信息的统计,json格式。 data_validate Boolean 发布前数据是否经过校验算法校验。可选值如下: true:数据经过校验 false:数据未经过校验 deleted_sample_count Integer 已删除的样本数量。
imageNet 1.0:目录方式,只支持单标签 相同标签的图片放在一个目录里,并且目录名字即为标签名。当存在多层目录时,则以最后一层目录为标签名。 示例如下所示,其中Cat和Dog分别为标签名。 dataset-import-example ├─Cat │ 10.jpg
线上训练得到的模型是否支持离线部署在本地? 通过ModelArts预置算法训练得到的模型是保存在OBS桶里的,模型支持下载到本地。 在训练作业列表找到需要下载模型的训练作业,单击名称进入详情页,获取训练输出路径。 图1 获取训练输出位置 单击“输出路径”,跳转至OBS对象路径,下载训练得到的模型。
已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed 代码目录。 图1 创建训练作业
lder_name criticism_sample_path 否 None 数据清洗负样例目录。目录应存放负样例图片文件,算法将这些图片为负样例,对算法输入中的数据进行过滤, 即保留与“criticism_sample_path”目录下图片相似度差距较大的数据。 建议该参数和“