检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如下以查询uuid为2cd88daa-31a4-40a8-a58f-d186b0e93e4f的训练作业对应worker-0镜像保存任务为例。 GET https://endpoint/v2/{project_id}/training-jobs/2cd88daa-31a4-40a8-a58f-d1
数据集 设置环境变量。 export EAGLE_TARIN_MODE=1 如果使用开源数据集,推荐使用原论文代码仓数据集,下载地址:https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V4
数据集 设置环境变量。 export EAGLE_TARIN_MODE=1 如果使用开源数据集,推荐使用原论文代码仓数据集,下载地址:https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V4
数据集 设置环境变量。 export EAGLE_TARIN_MODE=1 如果使用开源数据集,推荐使用原论文代码仓数据集,下载地址:https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V4
样本列表。样本属性请见表3。 表3 sample样本属性 参数 参数类型 描述 source String 被标注对象的URI,支持OBS、HTTPS、Content。其中Content为文本内容,例如:“source”:“s3://path-to-jpg”,“source”:“content://I
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
used_quota Integer 已用配额值。当quota为-1(不限制配额)时,used_quota为null。 请求示例 GET https://{endpoint}/v1/{project_id}/workspaces/ccd05d1a553b4e188ea878e7dcb85e47/quotas
为指定服务添加标签。设置TMS标签的key为“test”和“model_version”,TMS标签的value为“service-gpu”和“0.1”。 https://{endpoint}/v1/{project_id}/services/a55eba18-1ebf-4e9a-8229-d2d3b593a3dc/tags/create
使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build --build-arg "https_proxy=http://xxx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx
如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build --build-arg "https_proxy=http://xxx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx
如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build --build-arg "https_proxy=http://xxx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx
状态码: 200 表5 响应Body参数 参数 参数类型 描述 workspace_id String 工作空间ID。 请求示例 PUT https://{endpoint}/v1/{project_id}/workspaces/ccd05d1a553b4e188ea878e7dcb85e47
创建Workflow定时调度。设置类型为“time”,动作为“run”,调度策略on_failure为“retry”、on_running为“cancel”。 POST https://{endpoint}/v2/{project_id}/workflows/{workflow_id}/schedules {
Integer GPU卡数。 gpu_memory String GPU内存。 type String GPU类型。 请求示例 GET https://{endpoint}/v1/{project_id}/notebooks/flavors 响应示例 状态码: 200 OK {