检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。 模型权重文件获取地址请参见支持的模型列表和权重文件。 若需要部署量化模型,请参考推理模型量化在No
中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。 模型权重文件获取地址请参见表1。 若需要部署量化模型,请参考推理模型量化在Notebook中进行权
求进行加密签名。 SK(Secret Access Key):与访问密钥ID结合使用的密钥,对请求进行加密签名,可标识发送方,并防止请求被修改。 使用AK/SK认证时,您可以基于签名算法使用AK/SK对请求进行签名,也可以使用专门的签名SDK对请求进行签名。详细的签名方法和SDK使用方法请参见API签名指南。
中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。 模型权重文件获取地址请参见支持的模型列表和权重文件。 如果需要部署量化模型,请参考推理模型量化在N
预置算法运行故障 日志提示“label_map.pbtxt cannot be found” 日志提示“root: XXX valid number is 0” 日志提示“ValueError: label_map not match” 日志提示“Please set the train_url
objects 超参搜索算法的参数列表。 description String 超参搜索算法的描述。 表4 params 参数 参数类型 描述 key String 超参搜索算法的参数名称。 value String 超参搜索算法的参数取值。 type String 超参搜索算法的参数类型。
【下线公告】华为云ModelArts算法套件下线公告 华为云ModelArts服务算法套件将在2024年6月30日00:00(北京时间)正式退市。 下线范围 下线Region:华为云全部Region。 下线影响 正式下线后,ModelArts Notebook中将不会预置算法套件相关工具ma-c
据预测结果内容,可识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练
步骤3:使用订阅算法创建训练作业 算法订阅成功后,算法将呈现在“算法管理>我的订阅”中,您可以使用订阅的“ResNet_v1_50”算法创建训练作业,获得模型。 进入“算法管理 > 我的订阅”页面,选择订阅的“图像分类-ResNet_v1_50”算法,单击操作列的“创建训练作业”。
objects 算法类别的列表。 total Integer 总数。 表4 ProcessorTaskItem 参数 参数类型 描述 label_en String 算法类别的英文名称。 label_zh String 算法类别名称。 template_id String 算法类别的ID。
本地导入的算法有哪些格式要求? ModelArts支持导入本地开发的算法,格式要求如下: 编程语言不限。 启动文件必须选择以“.py”结尾的文件。 文件数(含文件、文件夹数量)不超过1024个。 文件总大小不超过5GB。 父主题: 功能咨询
LabelAttribute objects 标签的多维度属性,如标签为“音乐”,可能包含属性“风格”、“歌手”等。 name 否 String 标签名称。 property 否 LabelProperty object 标签基本属性键值对,如颜色、快捷键等。 type 否 Integer
自动学习和订阅算法有什么区别? 针对不同目标群体,ModelArts提供不同的AI开发方式。 如果您是新手,推荐您使用自动学习实现零代码模型开发。当您使用自动学习,系统会自动选择适合的算法和适合的参数进行模型训练。 如果您是AI开发进阶者,通过订阅算法进行模型训练有更多算法上的选择,并且您可以自定义训练所需的参数。
pbtxt。 原因分析 算法要求标注框为矩形标注框,提供的数据标注为非矩形,因此导致该错误发生。 处理方法 请您将数据的标注改为矩形的标注框。 建议与总结 在训练作业前,推荐您检查数据的标注是否符合算法要求(如物体检测类算法的标注框为矩形标注框)。 父主题: 预置算法运行故障
使用预置算法训练时,训练失败,报“bndbox”错误 问题现象 使用预置算法创建训练作业,训练失败,日志中出现如下报错。 KeyError: 'bndbox' 原因分析 用于训练的数据集中,使用了“非矩形框”标注。而预置使用算法不支持“非矩形框”标注的数据集。 处理方法 此问题有两种解决方法:
该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据是不符合规格的(如目标检测算法要求标注为矩形框,但是提供数据标注为非矩形框)。 处理方法 请您检查数据是否已标注,或检查数据标注是否符合算法要求。 父主题: 预置算法运行故障
5&sort_dir=desc 获取订阅算法的subscription_id,假设为43b22aeb-5b28-4fad-9581-e3c16d5a3e68,该值即为算法的订阅id。 根据subscription_id获取订阅算法的版本列表 GET https://modelarts
日志提示“UnboundLocalError: local variable 'epoch'” 问题现象 使用YOLOv5算法增量训练时出现如下报错:UnboundLocalError: local variable 'epoch' referenced before assignment。
错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 处理方法 请您保持数据中训练集和验证集的标签数量一致。 父主题: 预置算法运行故障
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,