检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
单击搜索框右侧的按钮,可设置Workflow列表页需要展示的内容和展示效果。 表格内容折行:默认为关闭状态。启用此功能可以让Workflow列表页中的内容在显示时自动换行。禁用此功能可截断文本,Workflow列表页中仅显示部分内容。 操作列:默认为开启状态,启用此能力可让操作列固定在最后一列永久可见。 自定义显
参数 是否必选 参数类型 描述 high_score 否 String 置信度上界,默认为1。 label_name 否 String 标签名。 label_type 否 Integer 标注类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体
variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业进程异常退出 训练作业进程被kill 父主题: 训练作业
workforce_task_id 是 String 团队标注任务ID。 表2 Query参数 参数 是否必选 参数类型 描述 label_name 否 String 标签名。 label_type 否 Integer 标注类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体
收集项 说明 实际情况(请填写) 项目名称 项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。 使用BertBase算法对用户在app上购买商品后的评论进行理解。 - CPU架构 X86/ARM,自有软件是否支持ARM。 例如:
String 标注团队成员邮箱。 high_score 否 String 置信度上界,默认为1。 label_name 否 String 标签名。 label_type 否 Integer 标注类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体
开发环境 创建Notebook 使用JupyterLab打开Notebook调试代码 通过VS Code远程使用Notebook实例 算法管理 创建算法 训练模型 创建生产训练作业 创建调试训练作业 查看训练作业日志 分布式训练 创建AI应用 简介 管理AI应用 部署AI应用 部署为在线服务
步骤以及步骤之间的关系进行定义 针对工作流复用,用户可以在开发完成后将流水线固化下来,提供下次或其他人员使用,同时无需关注流水线中包含什么算法或如何实现 图1 Workflow流程 父主题: Standard功能介绍
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
CogVideoX-2b-sat wget https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1 mv 'index.html?dl=1' vae.zip unzip vae.zip wget https://cloud.tsinghua
OBS中。 Step10 通过openssl创建SSL pem证书 在ECS中执行如下命令,会在当前目录生成cert.pem和key.pem,并将生成的pem证书上传至OBS。证书用于后续在推理生产环境中部署HTTPS推理服务。 openssl genrsa -out key.pem
收集项 说明 实际情况(请填写) 项目名称 项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。 使用BertBase算法对用户在app上购买商品后的评论进行理解。 - CPU架构 X86/ARM,自有软件是否支持ARM。 例如:
以图像分类为例,阐述机器学习端到端场景的完整开发过程,主要包括数据标注、模型训练、服务部署等过程。您需要准备如下算法和数据集。 准备一个图像分类算法(或者可以直接从AI Gallery搜索订阅一个“图像分类-ResNet_v1_50”算法)。 准备一个图片类型的数据集,请参考准备数据集。可从AI Gallery直接
ModelArts Standard模型训练案例 表4 自定义算法样例列表 样例 镜像 对应功能 场景 说明 使用ModelArts Standard自定义算法实现手写数字识别 PyTorch 自定义算法 手写数字识别 使用用户自己的算法,训练得到手写数字识别模型,并部署后进行预测。 从0
label_entity1 = dict() # 标签对象 label_entity1['name'] = "疾病" # 标签名称 label_entity1['type'] = 101 # 标签类型,101表示实体类型标签 label_entity2 = dict()
index-url = https://repo.huaweicloud.com/repository/pypi/simple trusted-host = repo.huaweicloud.com timeout = 120 在华为开源镜像站https://mirrors.huaweicloud
需指定op的值。可选值如下: OR:或操作 AND:与操作 表8 SearchLabel 参数 参数类型 描述 name String 标签名。 op String 多个属性之间的操作类型。可选值如下: OR:或操作 AND:与操作 property Map<String,Array<String>>
raining-project}/。 如果报错路径为训练数据路径,需要在以下两个地方完成适配,具体适配方法请参考自定义算法适配章节的输入输出配置部分: 在创建算法时,您需要在输入路径配置中设置代码路径参数,默认为“data_url”。 您需要在训练代码中添加超参,默认为“data
训练作业”,默认进入“训练作业”列表。单击“创建训练作业”进入创建训练作业页面。 在“创建训练作业”页面,填写相关参数信息,然后单击“提交”。 创建方式:选择“自定义算法”。 启动方式:选择“自定义”。 镜像:选择上传的自定义镜像。 启动命令: cd ${MA_JOB_DIR}/demo && python
task_version_id String 数据处理任务的版本ID。 template TemplateParam object 算法模板,如算法ID和参数等。 unmodified_sample_count Integer 处理后无修改的图片数量。 update_time Long