检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“图像分类”AI模型的训练和部署。 面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts
Standard推理服务支持VPC直连的高速访问通道配置 背景说明 访问在线服务的实际业务中,用户可能会存在如下需求: 高吞吐量、低时延 TCP或者RPC请求 因此,ModelArts提供了VPC直连的高速访问通道功能以满足用户的需求。 使用VPC直连的高速访问通道,用户的业务请求不需要经过推理
型进行微调或直接应用,减轻模型集成的负担。 零代码、免配置、免调优模型开发 平台结合与100+客户适配、调优开源大模型的行业实践经验,沉淀了大量适配昇腾,和调优推理参数的最佳实践。通过为客户提供一键式训练、自动超参调优等能力,和高度自动化的参数配置机制,使得模型优化过程不再依赖于
SDK、OBS SDK和MoXing的区别是什么? ModelArts的API或SDK支持模型下载到本地吗? ModelArts通过OBS的API访问OBS中的文件,属于内网还是公网访问? 调用ModelArts API接口创建训练作业和部署服务时,如何填写资源池的参数?
通过VPC高速访问通道的方式访问在线服务 背景说明 访问在线服务的实际业务中,用户可能会存在如下需求: 高吞吐量、低时延 TCP或者RPC请求 因此,ModelArts提供了VPC直连的高速访问通道功能以满足用户的需求。 使用VPC直连的高速访问通道,用户的业务请求不需要经过推理
在LLM推理应用中,经常会面临具有长system prompt的场景以及多轮对话的场景。长system prompt的场景,system prompt在不同的请求中但是相同的,KV Cache的计算也是相同的;多轮对话场景中,每一轮对话需要依赖所有历史轮次对话的上下文,历史轮次中的KV Cache在后续每一轮中
当前仅支持PyTorch和MindSpore AI框架,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 本文档提供的调测代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 本文档提供的调测代码是以PyTorch为例编写的,不同的AI框架之间,整体
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池
本文旨在帮助您了解ModelArts的基本使用流程以及相关的常见问题,帮助您快速上手ModelArts服务。 面向不同AI基础的开发者,本文档提供了相应的入门教程,帮助用户更快速地了解ModelArts的功能,您可以根据经验选择相应的教程。 面向AI开发零基础的用户,您可以使用ModelArts在AI
、物体检测等等。不同的项目对数据的要求,使用的AI开发手段也是不一样的。 准备数据 数据准备主要是指收集和预处理数据的过程。 按照确定的分析目的,有目的性的收集、整合相关数据,数据准备是AI开发的一个基础。此时最重要的是保证获取数据的真实可靠性。而事实上,不能一次性将所有数据都采
_pip_str设置对应的代理和pip源,来确保当前代理和pip源可用。 精度评测新建一个conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。命令中的$work_dir 是benchmark_eval的绝对路径。 conda activate
_pip_str设置对应的代理和pip源,来确保当前代理和pip源可用。 精度评测新建一个conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。命令中的$work_dir 是benchmark_eval的绝对路径。 conda activate
时后”、“自定义”。如果选择“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 如果您购买了套餐包,计算节点规格可选择您的套餐包,同时在“配置费用”页签还可查看您的套餐包余量以及超出部分的计费方式,请您务必关注,避免造成不必要的资源浪费。 完成资源配置后,单击“继续
timm==0.4.12 termcolor==1.1.0 yacs==0.1.8 准备run.sh文件中所需要的obs文件路径。 准备imagenet数据集的分享链接 勾选要分享的imagenet21k_whole数据集文件夹,单击分享按钮,选择分享链接有效期,自定义提取码,例如123456,单击“复制链接”,记录该链接。
Optimization):是一种在强化学习中广泛使用的策略优化算法。它属于策略梯度方法的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training
Prefill(Splitfuse)特性的目的是将长prompt request分解成更小的块,并在多个forward step中进行调度,只有最后一块的forward完成后才开始这个prompt request的生成。将短prompt request组合以精确填充step的空隙,每个step的计算量基本相等,达到所有请求平均延迟更稳定的目的。
Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型 通过AI Gallery的模型在线模型体验,可以实现模型服务的即时可用性,开发者无需
servers”字段,新增对应的key-value键值对即可。 适配JupyterLab访问地址。 在左侧导航打开“ vi /home/ma-user/work/grf/grafana-9.1.6/conf/defaults.ini”文件。 修改[server]中的“root_url”和“serve_from_sub_path”字段。
Optimization):是一种在强化学习中广泛使用的策略优化算法。它属于策略梯度方法的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training
查看日志和性能 单击作业详情页面,则可查看训练过程中的详细信息。 图1 查看训练作业 在作业详情页的日志页签,查看最后一个节点的日志,其包含“elapsed time per iteration (ms)”数据,可换算为tokens/s/p的性能数据。 吞吐量(tokens/s/p):global