检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli
要禁止特定的内核版本更新,你可以使用“apt-mark”命令将其锁定。 首先,检查你当前的内核版本: uname -r 例如,如果你的内核版本是“5.4.0-42-generic”,你需要锁定所有与此版本相关的软件包。可执行以下命令: sudo apt-mark hold linux-image-5
onvert_mg_hf.sh脚本,将执行的python命令复制下来,修改环境变量的值。进入到 /home/ma-user/ws/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户直接编辑scripts/llama2/2_convert_mg_hf
78.2或更高版本,如果是,请查看Remote-SSH版本,如果Remote-SSH版本低于v0.76.1,请升级Remote-SSH。 打开命令面板(Windows: Ctrl+Shift+P,macOS:Cmd+Shift+P),搜索“Kill VS Code Server on
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。
Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli
镜像保存成功后,实例状态变为“运行中”,用户可在“镜像管理”页面查看到该镜像详情。 单击镜像的名称,进入镜像详情页,可以查看镜像版本/ID,状态,资源类型,镜像大小,SWR地址等。 基于自定义镜像创建Notebook实例 从Notebook中保存的镜像可以在镜像管理中查询到,可以用于创建新的Note
请执行启动操作,如果实例处于其他状态比如“错误”,请尝试先执行停止然后执行启动操作。待实例变为“运行中”后,再次执行远程连接。 执行如下命令排查本地网络是否可以访问。 curl -kv <ssh域名>:<ssh端口> 如果端口不通,请检查本地网络。 如果问题还未解决,请联系技术支持。
co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 在Notebook中运行以下命令下载并安装AutoAWQ源码。 git clone -b v0.2.5 https://github.com/casper-hansen/AutoAWQ
"app_codes" : [ "1f5f6cb703864cc580d1ba2cdfd77a271a74eee8e5a242e8b5adc009f77a8b2a" ], "app_id" : "54d9104db9e7418f9138980da63a857f",
在左侧导航栏选择“告警 > 告警规则”,在右上角单击“添加告警”。 设置告警规则(以NPU掉卡为例)。 规则类型:选择阈值类告警。 监控对象:选择命令行输入。 命令行输入框: sum(nt_npg{type="NT_NPU_CARD_LOSE"} !=2) by (cluster_name, node_ip
zip并解压,无需重复执行。 进入benchmark_tools目录下运行静态benchmark验证脚本benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python benchmark_parallel.py --backend
请求推理服务 另外启动一个terminal,使用命令测试推理服务是否正常启动,端口请修改为启动服务时指定的端口。 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿
常用框架指使用ModelArts训练管理中支持的常用AI引擎,当前支持的引擎列表请参见ModelArts支持的预置镜像列表。 如果您使用的AI引擎为支持列表之外的,建议使用自定义镜像的方式创建训练作业。 AI Engine 选择代码使用的AI引擎及其版本。支持的AI引擎与ModelArts管理控制台里ModelArts支持的预置镜像列表一致。
ence。 通过vLLM服务API接口启动服务 在ascend_vllm目录下通过vLLM服务API接口启动服务,具体操作命令如下,API Server的命令相关参数说明如下,可以根据参数说明修改配置。 python -m vllm.entrypoints.api_server --model
过程。 约束限制 当前仅贵阳一区域支持选择本案例中的规格及镜像。 操作步骤 ModelArts管理控制台左侧导航栏中选择“开发环境 > Notebook”,进入“Notebook”管理页面。 单击“创建”,进入“创建Notebook”页面。 图1 实例创建入口 请参见如下说明填写参数,并单击“立即创建”。
后端优化: 后端优化模块的优化主要包括TensorCore使能、双缓冲区、内存展开和同步指令插入等。 性能分析工具 msprof命令行工具提供了采集通用命令以及AI任务运行性能数据、昇腾AI处理器系统数据、Host侧系统数据和采集和解析能力。面向推理的场景,可以对于模型的执行性能数
CPU架构的自定义镜像分别只能运行于对应CPU架构的规格中。 执行如下命令,查看自定义镜像的CPU架构。 docker inspect {自定义镜像地址} | grep Architecture ARM CPU架构的自定义镜像,上述命令回显如下。 "Architecture": "arm64"
Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli
目录,相当于/data和/work是同一层级,所以在JupyterLab中看不到。 打开Terminal后,默认为~work目录,执行如下命令进入~data目录查看本地挂载路径: (PyTorch-1.8) [ma-user work]$cd (PyTorch-1.8) [ma-user