检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录
Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展SD3-模型的训练过程。 资源规格要求 推荐使用“
workflow", steps=[job_step], storages=storage ) 案例中job_step配置了相关的跳过策略,并且通过一个bool类型的参数进行控制。当name为is_skip的Placeholder参数配置为True时,condit
参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录
0提供领先的中英双语多模态能力支持。 该能力通过VisCPM [ICLR'24]论文中提出的多模态能力的跨语言泛化技术实现。 方案概览 本方案介绍了在ModelArts的Lite Server上使用昇腾计算资源开展MiniCPM-V2.0 LoRA训练的详细过程,及一份推理示例代码。完成
InternVL2基于LIte Server适配PyTorch NPU训练指导(6.3.912) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展InternVL2-8B, InternVL2-26B和InternV
修复Standard专属资源池故障节点 Standard专属资源池支持对故障节点进行修复操作,目前提供了替换节点、高可用冗余节点、重置节点和重启节点等方式。华为云技术支持在故障定位和性能诊断时,部分运维操作需要用户授权才可进行,本章节同时也介绍了如何进行授权操作。 故障节点处理方式
参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。
参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录
--device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,finetune全量微调示例中挂载了8张卡davinci0~davinci7。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。
SD1.5基于Lite Server适配PyTorch NPU Finetune训练指导(6.3.904) Stable Diffusion(简称SD)是一种基于Latent Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为
参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录
参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录
${container_name} \ ${image_id} \ /bin/bash 参数说明: device=/dev/davinci0:挂载NPU设备,示例中挂载了1张卡davinci0。 ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器
改框的大小。也可使用【X+鼠标左键】 复位,与上方拖动为同组操作,当执行了拖动后,可以单击复位按钮快速将标注框恢复为拖动前的形状和位置。也可使用快捷键【Esc】 标注图片(图像分割) 标注作业详情页中,展示了此标注作业中“全部”、“未标注”和“已标注”的图片,默认显示“未标注”的图片列表。
TrainingFiles code_dir = os.path.join(base_local_path, "train/") # 这里提前将训练脚本放在了obs中,实际上训练脚本可以是任何来源,只要能够放到Notebook里边就行 session.obs.download_file(os.path
"annotated_by": "" } ] } 根据响应可以了解智能标注的样本数量和样本列表,由“sample_count”参数可知总共标注了2个样本,从“@modelarts:hard”参数可知有一个难例样本。 调用批量更新样本标签接口根据上一步获取的智能标注样本列表确认智能标注结果。
型要小得多。 为每个模型提供针对性的投机模型: Eagle的模型大小及结构,与基模型的某一层完全相同,这使得它的大小远远小于其基模型。解决了对于部分原始LLM模型,找不到合适的投机模型的问题。 投机小模型训练端到端示例 本章节提供eagle小模型自行训练的能力,客户可通过本章节,
器名称。 --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7,可根据需要选择挂载卡数。 -v ${work_dir}:${container_work_dir}
/bin/bash 参数说明: device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的