检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
调用盘古大模型API 用户可以通过API调用盘古大模型服务的基模型以及用户训练后的模型。训练后的模型只有在使用“在线部署”功能时,才可以使用本章节提供的方法进行调用。本章节将介绍如何使用Postman调用API,仅供测试使用。 前提条件 使用API调用模型前,请先完成盘古大模型服务订购和开通操作
数据保护技术 盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护
LLMs(语言模型) LLMs模块用于对大语言模型API的适配封装,提供统一的接口快速地调用盘古、GALLERY三方模型等模型API。 初始化:根据相应模型定义LLM类,如使用盘古LLM为: LLMs.of("pangu")。 from pangukitsappdev.api.llms.factory
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型
调用AI助手API 获取AI助手API调用地址 登录盘古大模型套件平台。 左侧导航栏选择“应用开发 > AI助手”,选择需要运行的AI助手,单击“查看”。 图1 查看AI助手 在详情页面,AI助手API调用地址。 图2 获取调用地址 获取Token 本示例中,通过使用Postman
实例化Agent Agent实例化过程包括注册LLM和注册工具两个部分。 from pangukitsappdev.agent.react_pangu_agent import ReactPanguAgent from pangukitsappdev.api.llms.factory
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM
配置盘古访问授权 盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够正常的存储数据、训练模型,需要用户配置盘古访问OBS的权限。 使用主账号登录盘古大模型套件平台。 在左侧菜单选择
运行Agent 单轮执行 调用run接口运行一个Agent: agent.run("帮我定个下午3点到8点2303会议室") Agent的运行时会进行自我迭代,并且选择合适的工具,在日志中打印最终的执行结果: 用户: 帮我定个下午3点到8点2303会议室 助手: 好的,2023-11
基于NL2JSON助力金融精细化运营 场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为
文档摘要 基于已有的知识库,进行摘要总结。有stuff、refine、map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型处理,适合文档较少的场景。 from pangukitsappdev.api.embeddings.factory import
文档问答 基于已有的知识库进行回答。有stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型回答,适合文档较少的场景。 from pangukitsappdev.api.embeddings.factory import Embeddings
History History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式, 如内存、DCS(Redis)和RDS(Sql)。 from pangukitsappdev.memory.sql_message_history
Agent流式输出 Agent用于工具调用场景,与普通的LLM流式输出相比,区分了文本流与工具流。文本流将输出模型的思考过程和最终结果;工具流将输出工具的调用过程,而工具的调用的执行结果是通过监听获取的。 通过如下接口为Agent添加流式输出的回调: from pangukitsappdev.callback.StreamCallbackHandler
Vector Embedding Emebedding模块用于对Emebedding模型API的适配封装,提供统一的接口快速地调用CSS等模型emebedding能力。 初始化:根据相应模型定义Emebedding类,如使用华为CSS Embedding为:Embeddings.of
自定义模型 如果使用的模型不是盘古或者兼容OpenAI-API的开源模型,如,闭源模型或者裸机部署的自定义推理服务,可以通过继承AbstractLLM自定义一个模型,示例代码如下: @Slf4j public class CustomLLM extends AbstractLLM<
Cache Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,当需要访问这些数据时,无需再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 Cache缓存有以下几种操作: 初始化:指定缓存使用哪种存储方式,例如,使用内存型缓存可以设置为
Agent效果优化 如果Agent出现无法正确调用工具的情况,可以尝试一些prompt优化技术提升效果。 优化System prompt 提示财务报销助手依赖的必要信息,如用户名称等基础信息: final String customSystemPrompt = "你是财务报销助手
错误码 当您调用API时,如果遇到“APIGW”开头的错误码,请参见API网关错误码进行处理。遇到“APIG”开头的错误码,请参考本文档进行处理。 表1 错误码 错误码 错误信息 说明 建议解决方法 PANGU.0001 unknown error. 未知错误。 请联系服务技术支持协助解决
Token计算器 功能介绍 为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployments