检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行Cypher查询 功能介绍 Cypher是一种被广泛使用的声明式图数据库查询语言,使用Cypher语句可以查询GES中的数据,并返回结果。当前的Cypher实现中使用了图的统计信息,目前Cypher查询编译过程中使用了基于label的点边索引,如需正常使用Cypher,请先参考
pagerank算法(1.0.0) 表1 parameters参数说明 参数 是否必选 类型 说明 alpha 否 Double 权重系数(又称阻尼系数),取值范围为(0,1),默认值为0.85。 convergence 否 Double 收敛精度。取值范围(0,1),默认值为0.00001
聚类系数算法(cluster_coefficient) 功能介绍 根据输入参数,执行cluster_coefficient算法。 聚类系数算法(cluster_coefficient)用于计算图中节点的聚集程度。 URI POST /ges/v1.0/{project_id}/hyg
执行事务Cypher 功能介绍 执行事务Cypher。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/transaction/{commit} 表1 路径参数 参数 是否必选 类型 说明 project_id 是 String
带过滤全最短路径(filtered_all_shortest_paths)(2.2.17) 参数说明 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 起点ID String - - - target 是 终点ID String -
与其他云服务的关系 与统一身份认证服务的关系 图引擎服务使用统一身份认证服务(Identity and Access Management,简称IAM)提供华为云统一入口的鉴权功能。 与虚拟私有云的关系 图引擎服务使用虚拟私有云(Virtual Private Cloud,简称VPC
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度
客户端连接参数 Java import com.huaweicloud.sdk.core.http.HttpConfig; // 使用默认配置 HttpConfig config = HttpConfig.getDefaultHttpConfig(); // 默认连接超时时间为60
点集最短路(Shortest Path of Vertex Sets) 概述 点集最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的最短路径。 适用场景 点集最短路算法(Shortest Path of Vertex Sets)适用于互联网社交
点集共同邻居(Common Neighbors of Vertex Sets) 概述 点集共同邻居(Common Neighbors of Vertex Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友
点集最短路(Shortest Path of Vertex Sets)(1.0.0) 表1 Parameter参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources 是 起点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如:“Alice,Nana
单点环路检测(Single Vertex Circles Detection) 概述 单点环路检测(Single-Vertex-Circles-Detection)是一个经典的图问题,意在寻找图中的环路。环路上的点较好地体现了该点的重要性。 适用场景 单点环路检测适用于交通运输、金融风控等场景
带一般过滤条件最短路径(filtered_shortest_path)(2.2.4) 请求 参数说明 表1 parameters参数说明 参数 是否必选 类型 说明 source 是 String 输入路径的起点ID。 target 是 String 输入路径的终点ID。 directed
点集全最短路(All Shortest Paths of Vertex Sets) 概述 点集全最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的所有最短路径。 适用场景 点集最短路算法可应用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系的分析
带过滤全最短路径(Filtered All Shortest Paths) 概述 带过滤全最短路径(Filtered All Shortest Paths)是在最短路径算法(Shortest Path)基础上支持条件过滤,寻找图中两节点之间满足条件的全最短路径。 适用场景 适用于关系挖掘
带过滤的n_paths算法(filtered_n_paths) 概述 带过滤的n_paths算法是给定起始点source、目的点target、跳数k、路径数n、过滤条件filters,找出source和target间不多于n条的k跳无环路径。 适用场景 任意网络。 参数说明 表1
Gremlin/Cypher查询是否支持几条命令一起执行? Gremlin支持多条命令一起执行,命令之间用分号隔开。 例如: graph = EywaGraph.open('ges_6715');g = graph.traversal();g.V().limit(1) Cypher
带一般过滤条件最短路径(Filtered Shortest Path) 概述 带一般过滤条件最短路径算法(Filtered Shortest Path)寻找两点间满足过滤条件的最短路径,如有多条,返回任意一条最短路径。 适用场景 带一般过滤条件的最短路径算法(Filtered Shortest
带过滤全对最短路径(Filtered All Pairs Shortest Paths) 概述 带过滤全对最短路径(Filtered All Pairs Shortest Paths)是寻找图中任意两点之间满足条件的最短路径。当前,考虑到实际应用场景,此算法需要用户指定起点集(sources
带一般过滤条件环路检测(filtered circle detection) 概述 带一般过滤条件环路检测(filtered circle detection)目的是寻找图中所有满足过滤条件的环路。 适用场景 带一般过滤条件的环路检测(filtered circle detection