检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查询Notebook实例详情 功能介绍 查询Notebook实例详情,可查询实例详细信息包括实例ID、名称、规格、镜像、实例状态和实例可打开的URL等。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK
配置仪表盘查看指标数据 Grafana中可以自定义配置各种视图的仪表盘,ModelArts也提供了针对集群的配置模板。本章节通过使用ModelArts提供的模板查看指标和创建Dashboards查看指标的方式,说明如何进行仪表盘配置。Grafana的更多使用请参考Grafana官方文档
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持
删除Notebook实例 功能介绍 删除Notebook实例,删除的资源包括Notebook容器以及对应的所有存储资源。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
查询Notebook支持的可切换规格列表 功能介绍 查询创建Notebook实例支持的可切换的规格列表。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署
SD3.5基于Lite Server适配PyTorch NPU的推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 本文基于diffusers和comfyui两个框架进行适配。 方案概览
精度调优前准备工作 在定位精度问题之前,首先需要排除训练脚本及参数配置等差异的干扰。目前大部分精度无法对齐的问题都是由于模型超参数、Python三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。此外
SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础上,
在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类 仅“华东二”和“西南-贵阳一”区域支持使用ModelArts Studio大模型即服务平台(MaaS)。 应用场景 在数字化时代,新闻的生成与传播速度不断刷新记录。在ModelArts Studio大模型即服务平台
SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.908) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL LoRA是指在已经训练好的SDXL模型基础上,使用新的数据集进行
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
(可选)Session鉴权 Session鉴权概述 Session模块的主要作用是实现与公有云资源的鉴权,并初始化ModelArts SDK Client、OBS Client。当成功建立Session后,您可以直接调用ModelArts的SDK接口。 ModelArts开发环境Notebook
安全边界 云服务的责任共担模型是一种合作方式,其中云服务提供商和云服务客户共同承担云服务的安全和合规性责任。这种模型是为了确保云服务的安全性和可靠性而设计的。 根据责任共担模型,云服务提供商和云服务客户各自有一些责任。云服务提供商负责管理云基础架构,提供安全的硬件和软件基础设施,并确保云基础架构的可用性
模型的自定义镜像制作流程 如果您使用了ModelArts不支持的AI引擎开发模型,也可通过制作自定义镜像,导入ModelArts创建为模型,并支持进行统一管理和部署为服务。 制作流程 场景一: 预置镜像的环境软件满足要求,只需要导入模型包,就能用于创建模型,通过镜像保存功能制作。具体案例参考在
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署
查询所有Notebook实例列表 功能介绍 查询所有Notebook实例列表,用户可按需查询满足条件的Notebook实例列表。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK