检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态,动态性能评测脚本 执行性能测试脚本前,需先安装相关依赖。 pip install
正常运行完成训练,会显示如下内容。 图7 训练完成 精度一般问题不大,step_loss都是一个较小值。 训练过程中,训练日志会在最后的Rank节点打印。可以使用可视化工具TrainingLogParser查看loss收敛情况。 其它注意事项 默认500step保存一个checkpoint,可以通过在启动脚本
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
在获取软件和镜像中,下载并解压代码包。本文档主要使用aigc_train->torch_npu->diffusers下的部分文件,请利用OBS Browser+工具将文件夹中内容上传至OBS的代码文件夹code中。 obs://<bucket_name>/code ├── diffusers-train
务需要选择任务所需的资源卡数。 如果选择付费资源,则请确认账号未欠费,且余额高于所选计算规格的收费标准,否则可能会导致AI Gallery工具链服务异常中断。AI Gallery的计算规格的计费说明请参见计算规格说明。 作业参数配置完成后,单击“启动作业”。 在“订单信息确认”页
在获取软件和镜像中,下载并解压代码包。本文档主要使用ascendcloud-aigc-poc-sdxl-finetune文件夹中的文件,请利用OBS Browser+工具将文件夹中内容上传至OBS的代码文件夹code中。 obs://<bucket_name>/code ├── attention_processor
其他场景(如Multi-lora)暂未支持。小模型如Qwen2-1.5B和Qwen2-0.5B推荐不设置该参数。 --disable-async-output-proc:关闭异步后处理特性,关闭后性能会下降。 高阶参数说明: --enable-prefix-caching:如果p
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
磁盘上。 使用ModelArts VSCode插件调试训练ResNet50图像分类模型 MindSpore VS Code Toolkit工具 目标检测 本案例以Ascend Model Zoo为例,介绍如何通过VS Code插件及ModelArts Notebook进行云端数据调试及模型开发。
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt