检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。
Platform=ModelArts-Service 原因分析 出现该问题的可能原因如下: 用户的自定义镜像中无ascend_check工具,导致启动预检失败。 用户的自定义镜像中的ascend相关工具不可用,导致预检失败。 处理方法 通过给训练作业加环境变量“MA_DETECT_TRAIN_INJECT_C
obsutil安装和配置 obsutil是用于访问、管理对象存储服务OBS的命令行工具,使用该工具可以对OBS进行常用的配置管理操作,如创建桶、上传文件/文件夹、下载文件/文件夹、删除文件/文件夹等。 obsutil安装和配置的具体操作指导请参见obsutils快速入门。 操作命
如果路径为~/anaconda3/envs/Pytorch-1.0.0/bin/python,把~替换为/home/ma-user即可。 Sync folders: 需要配置本地的工程目录文件同步到云上开发环境中的某个目录,推荐配置为/home/ma-user下的某个目录中(其他目
配比调优理论分析 PD分离部署性能对比对象为相同实例个数、实例使用相同卡数、相同SLO要求下的PD混推性能。 PD性能测评脚本与绘图工具请参考PD分离性能调优工具使用说明章节。 样例场景如下:模型qwen2.5 32B输入1024、输出512、SLO为2s + 50ms。 性能结果图解析
bucket for upload local file. -async, --is-async whether to upload resource packages in asynchronous mode. The default value is
是否必选 参数类型 描述 data_sync_type 否 Integer 同步类型。可选值如下: 0:不同步 1:同步数据 2:同步标签 3:同步数据和标签 repetition 否 Integer 每个样本由多少人标注,最少为1。 synchronize_auto_labeling_data
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
VS Code ToolKit连接Notebook 本节介绍如何在本地使用ModelArts提供的VS Code插件工具VS Code ToolKit,协助用户完成SSH远程连接Notebook。 VS Code ToolKit功能介绍 前提条件 已下载并安装VS Code。详细操作请参考安装VS
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
k代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台。 进入JupyterLab页面,在待分享的ipynb文件右侧,单击“创建分享”按钮,弹出“发布AI
k代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台,选择“开发环境 > Notebook”。 打开“运行中”的Notebook实例
使用Prometheus查看Lite Cluster监控指标 Prometheus是一款开源监控工具,ModelArts支持Exporter功能,方便用户使用Prometheus等第三方监控系统获取ModelArts采集到的指标数据。 本章节主要介绍如何通过Prometheus查看Lite
return torch._C._cuda_getDeviceCount() > 0 原因分析 nvidia-modprobe是一个Linux工具,用于在系统中加载NVIDIA驱动程序及其相关的内核模块。在Linux系统上安装NVIDIA显卡驱动后,需要通过“nvidia-modpr
在Notebook中通过Dockerfile从0制作自定义镜像 场景说明 本案例将基于ModelArts提供的MindSpore预置镜像,并借助ModelArts命令行工具(请参考ma-cli镜像构建命令介绍),通过加载镜像构建模板并修改Dockerfile,构建出一个新镜像,最后注册后在Notebook使用。
ir模型,再利用MindSpore Lite作为推理引擎,将转换后的模型直接运行在昇腾设备上。模型转换需要使用converter_lite工具。 Huggingface提供的onnx模型文件的输入是动态shape,而mindir不支持动态shape,只能使用静态shape或者几个