检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更
在“全部”、“未标注”或“已标注”页签下,您可以在筛选条件区域,添加筛选条件,快速过滤出您想要查看的数据。 支持的筛选条件如下所示,您可以设置一个或多个选项进行筛选。 难例集:难例或非难例。 标签:您可以选择全部标签,或者基于您指定的标签,选中其中一个或多个。 样本创建时间:1个
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
在开发环境中部署本地服务进行调试 可以通过部署本地服务来进行调试,即在导入模型或模型调试后,在开发环境Notebook中部署Predictor进行本地推理。 只支持使用ModelArts Notebook部署本地服务。 开发环境本地服务Predictor和在线服务Predictor说明
IEF节点边缘服务部署失败 问题现象 部署边缘服务时,出现“异常”状态。 原因分析1 部署边缘服务时,使用到IEF纳管的边缘节点,就需要用户给ModelArts的委托赋予Tenant Administrator权限,否则将无法成功部署边缘服务。具体可参见IEF的权限说明。 处理方法1
启动停止边缘节点服务实例 功能介绍 启动停止边缘节点服务实例。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v1/{project_id}/servic
数据源”,将OBS中的数据重新同步至ModelArts中。 检查OBS的访问权限 如果OBS桶的访问权限设置无法满足训练要求时,将会出现训练失败。请排查如下几个OBS的权限设置。 当前账号具备OBS桶的读写权限(桶ACLs) 进入OBS管理控制台,选择当前自动学习项目使用的OBS桶,单击桶名称进入概览页。
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更
训练作业访问OBS时,日志提示“stat:403 reason:Forbidden” 问题现象 训练作业访问OBS时,出现如下报错: ERROR:root:Failed to call: func= <bound method ObsClient.getObjectMetadata
若显存较低可以调整batch_size保证正常运行,改为8或者更小。 本次训练step为1000,训练时间较长,可以改为500。 如开启deepspeed训练时,需要设置参数checkpointing_steps>max_train_steps(严格大于),否则会报错。 父主题: 文生图模型训练推理
标注信息不满足切分条件 出现此故障时,建议根据如下建议,修改标注数据后重试。 多标签的样本(即一张图片包含多个标签),至少需要有2张。如果启动训练时,设置了数据集切分功能,如果多标签的数据少于2张,会导致数据集切分失败。建议检查您的标注信息,保证标注多标签的图片,超过2张。 数据集切分后,训
911版本仅是使用run_type来指定训练的类型,只能区分 预训练、全参微调和lora微调但实际上预训练和sft是训练的不同阶段,全参、lora是训练参数设置方式。为了更加明确的区分不同策略,以及和llama-factory对齐,6.3.912版本调整以下参数: 新增 STAGE,表示训练的阶段,可以选择的参数包括:
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请
模型运行时环境,系统默认使用python2.7。runtime可选值与model_type相关,当model_type设置为Image时,不需要设置runtime,当model_type设置为其他常用框架时,请选择您使用的引擎所对应的运行时环境。目前支持的运行时环境列表请参见推理支持的AI引擎。
将被一并删除。 其中,“角色”支持“Labeler”、“Reviewer”和“Team Manager”,“Team Manager”只能设置为一个人。 需要注意的是:目前不支持从标注任务中删除labeler。labeler的标注必须通过审核后,才能同步到最终结果,不支持单独分离操作。
对于首次使用ModelArts新用户,请直接新增委托即可。一般用户新增普通用户权限即可满足使用要求。如果有精细化权限管理的需求,可以自定义权限按需设置。 如果未获得委托授权,当打开“访问授权”页面时,ModelArts会提醒您当前用户未配置授权,需联系此IAM用户的管理员账号进行委托授权。
客户端上传镜像,是指在安装了容器引擎客户端的机器上使用docker命令将镜像上传到容器镜像服务的镜像仓库。 如果容器引擎客户端机器为云上的ECS或CCE节点,根据机器所在区域有两种网络链路可以选择: 如果机器与容器镜像仓库在同一区域,则上传镜像走内网链路。 如果机器与容器镜像仓库不
V1版本修改:file_io._NUMBER_OF_PROCESSES=1 V2版本修改:可以 file_io._LARGE_FILE_METHOD = 1,将模式设置成V1然后用V1的方式修改规避,也可以直接file_io._LARGE_FILE_TASK_NUM=1。 复制文件夹时可采用: mox.file